This document has been downloaded from:

MIDWAY'S

CARD RACK SYSTEM PART I

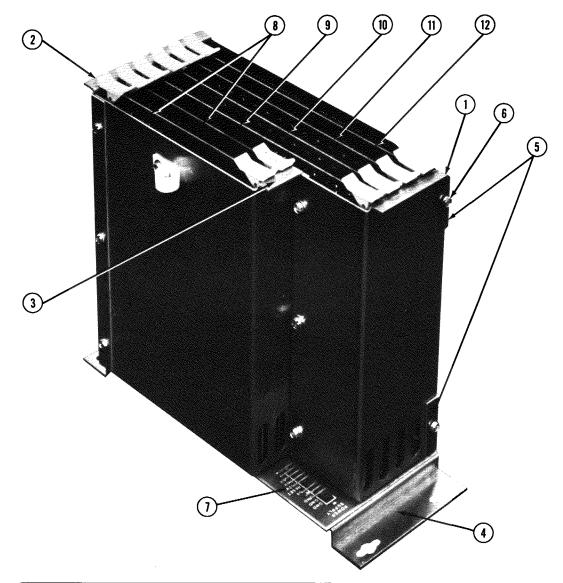
PHONE: (312) 452-5200

PHONE: TOLL FREE 800-323-7182

FORM-00237-8012

TABLE OF CONTENTS

	Page No.
COMMERCIAL CARD RACK ASSEMBLY & PARTS	1
SWITCH ADJUSTMENT — WIZARD OF WOR	2
SWITCH ADJUSTMENT — GORF	3
RAM — ROM TEST — SPACE ZAP	4—5
TEST DISPLAY — GORF	6
RAM & PATTERN TEST CARDS	7—8
PATTERN BOARD TEST	9—10
PATTERN BOARD THEORY OF OPERATION	11—12
PATTERN BOARD TEST SCHEMATIC	13—13A
TROUBLE SHOOTING CARD RACK SYSTEM	14—15
CUSTOM CHIP PIN OUT	16
I/O CHIP DESCRIPTION	17
ADDRESS CHIP DESCRIPTION	18
DATA CHIP DESCRIPTION	19
I.C. FUNCTION CHART	20—21
Z80 CPU PIN DESCRIPTION	22
STRAPPING CHARTS	23—24
LOGIC TERMS Z80	25—26
R G B BOARD SCHEMATIC	27
AUDIO AMP. BOARD SCHEMATIC & CONTROL GRIP	28—28A
WIRING SCHEMATIC — SPACE ZAP	29
WIRING SCHEMATIC — GORF	30
POWER SUPPLY SCHEMATIC	31
GAME BOARD LAYOUT — SPACE ZAP	32
GAME BOARD SCHEMATIC — SPACE ZAP	33
GAME BOARD LAYOUT — GORF	34
GAME BOARD SCHEMATIC — GORF	35
CPU BOARD LAYOUT	36
CPU BOARD SCHEMATIC	37
PATTERN BOARD LAYOUT	38
PATTERN BOARD SCHEMATIC	39
RAM — ROM BOARD LAYOUT (FOREIGN & DOMESTIC)	40—41
RAM — ROM BOARD SCHEMATIC (FOREIGN & DOMESTIC)	42—43
RAM BOARD LAYOUT	44
RAM BOARD SCHEMATIC	45
SERVICE BULLETINS	46—49


WARNING

THIS GAME MUST BE GROUNDED. FAILURE TO DO SO MAY RESULT IN DESTRUCTION TO ELECTRONIC COMPONENTS.

COPYRIGHT 1980 © BY MIDWAY MFG. CO. ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED BY ANY MECHANICAL, PHOTOGRAPHIC, OR ELECTRONIC PROCESS, OR IN THE FORM OF A PHONOGRAPHIC RECORDING, NOR MAY IT BE TRANSMITTED, OR OTHERWISE COPIED FOR PUBLIC OR PRIVATE USE, WITHOUT PERMISSION FROM THE PUBLISHER.

COMMERCIAL CARD RACK ASSY.

ITEM	PART Nº	DESCRIPTION
1	A789-00003-0000	P.C. RACK ASSY RIGHT
2	A789-00004-0000	P.C. RACK ASSY LEFT
3	A789-00005-0000	P.C. RACK ASSY BASE
4	0789-00100-0000	MTG. BRKT. SUPPORT (2 REQ'D.)
5	0789-00106-0000	RACK STRAP (2 REQ'D.)
6	0017-00101-0099	#6 x 1/4 SLT. HEX HD. SCREW (11 REQ'D.)
	0017-00104-0019	#6 FLAT WASHER (3 REQ'D.)
7	A082-90006-B000	BACK PANEL P.C. ASSY. (MOTHER BOARD)
8	A082-91356-C000	RAM BOARD ASSY.
9	A082-91354-F000	CPU BOARD ASSY.
10	A082-91355-C000	PATTERN TRANSFER BOARD ASSY.
11	A084-91364-A873	PROGRAMMED ROM/RAM BOARD ASSY.
12	A084-90708-C873	GAME LOGIC BOARD ASSY.
	0017-00007-0153	P.C. BOARD SUPPORT (2 REQ'D.) (NOT SHOWN)

SWITCH ADJUSTMENT - WIZARD OF WOR

OPTION SWITCH SETTINGS

Option switches are located on the game P.C.B. in the commercial card rack

	COINS	PERCREDIT	
LEFT HAN	D COIN SLOT IS CONTF	ROLLED BY SW. #1	
SW. #1 OFF ON		1 COIN 2 COINS	1 CREDIT 1 CREDIT
	ND COIN SLOT IS CONT	TROLLED BY SW. #2 A	AND SW. #3
SW. #3	SW. #2 OFF	1 COIN	1 CREDIT
OFF OFF	OFF	2 COINS	1 CREDIT
ON	OFF	1 COIN	3 CREDITS
ON	ON	1 COIN	5 CREDITS
	LA	NGUAGE	
SW, #4			
OFF		ENGLISH	
ON		FOREIGN L	ANGUAGE
		(REQUIRES	SA082-91374-A000)
	WORRIO	RS PER CREDIT	
OFF	1 CREDIT = 2 WO	RRIORS / 2 CREDITS	= 5 WORRIORS
ON	1 CREDIT = 3 WO	RRIORS / 2 CREDITS	= 7 WORRIORS
	BONUS PL	AYER AWARDED:	
SW. #5			
OFF		RAFTER 3RD DUNGE	
ON	BONUS WORRIOF	RAFTER 4TH DUNGE	ON
	PL	AY MODE	
SW. #7			
OFF	COIN PLAY		
ON	FREE PLAY		
	GAME ATT	RACTION SOUNDS	
SW. #8			
OFF	CONTINUOUS S	OUND DURING "A	ATTRACT MODE'
ON		ATTRACT MODE	
0.1		TOUCHED. (WHEN	
	CONTROL IS TOU	JCHED, GAME PROV	/IDES SOUND FOI
	ONE COMPLETE	CYCLE ON THE "AT	TRACT MODE''. I

PART NO. M051-00961-A021

WILL THEN BE QUIET UNTIL TOUCHED AGAIN).

SWITCH ADJUSTMENT — GORF

ADJUSTMENT SWITCHES

ON	OTH	HER LANGUA	GE REQUIRES A082-91374-A000.
SWITCH #4	EN	GLISH	
ON	ON	1 COIN	5 PLAYS
OFF	ON	1 COIN	3 PLAYS
ON	OFF	2 COINS	1 PLAY
OFF	OFF	1 COIN	1 PLAY
SWITCH #2	SWITCH #3		
RIGHT HAND	COIN SLOT IS	CONTROLLE	O BY SW. #2 & #3
ON	2 COINS	1 PLAY	
OFF	1 COIN	1 PLAY	
SWITCH #1			
LEFT HAND	COIN SLOT IS C	ONTROLLED	BY SW. #1

NUMBER	OF	BASES	PER	GAME
NOMBEN		DAGEO		

SWITCH #5	
OFF	TWO BASES PER CREDIT
ON	THREE BASES PER CREDIT
SWITCH #6	BONUS BASE AWARDED AFTER MISSION #5
ON	NO BONUS BASE
SWITCH #7	
OFF	COIN PLAY
ON	FREE PLAY
SWITCH #8	
OFF	GAME ATTRACTION SOUNDS DURING GAME OVER
ON	NO GAME ATTRACTION SOUNDS DURING GAME OVER
	M051-00873-A14.

RAM-ROM TEST - SPACE ZAP

PLACING THE TEST SWITCH, (LOCATED ON THE AUDIO AMPLIFIER ASSEMBLY IN THE COIN BOX AREA) TO ON PERFORMS THE FOLLOWING FUNCTIONS:

- (1) REMOVES ALL ACCUMULATED CREDITS
- (2) TESTS THE SCREEN RAM
- (3) TESTS THE STATIC RAM
- (4) TESTS THE GAME ROM/EPROM
- (5) REPEATS ALL TESTS INDEFINITELY

PLACING THE TEST SWITCH IN THE OFF POSITION RETURNS THE GAME TO NORMAL OPERATION AFTER COMPLETION OF THE ROM TEST. IF YOU WERE TO TURN THE TEST SWITCH OFF DURING THE SCREEN RAM TEST, IT WOULD TAKE APPROXIMATELY 15 SECONDS BEFORE THE GAME WOULD RE-APPEAR.

THE GAME DOES A MODIFIED FORM OF RAM TEST UPON POWER-UP OR WHENEVER THE DOOR-SLAM SWITCH IS ACTIVATED. IF AN ERROR IS FOUND, THE PROGRAM CONTINUES THE TEST UNTIL THE ERROR IS CLEARED. THEREFORE, IT IS POSSIBLE THAT THE GAME WILL NEVER START AND/OR THERE MAY BE NO INDICATION OF ANYTHING ON THE SCREEN IF THERE IS A RAM ERROR.

ERROR INDICATIONS

IF ALL RAM AND ROM ARE GOOD, THE ONLY INDICATION WILL BE AN OCCASIONAL FLASH ON THE SCREEN (APPROXIMATELY EVERY 16 SECONDS). THIS INDICATES THAT IT HAS PASSED ALL TESTS AND IS STARTING THE TEST SEQUENCE OVER AGAIN.

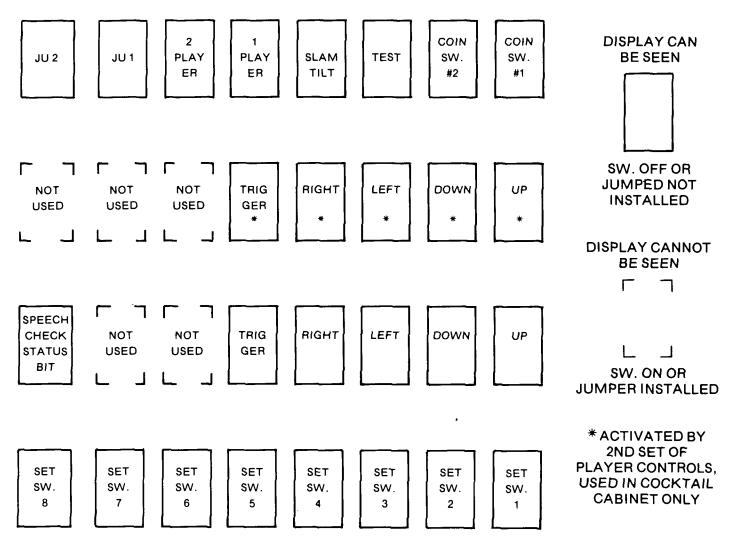
IF AN ERROR IS FOUND IN THE SCREEN RAM, YOU WILL SEE THE FLASH ON THE SCREEN FOLLOWED BY FLASHING RANDOM HORIZONTAL BARS. IT WILL THEN CYCLE THROUGH THE TEST AGAIN UNTIL THE ERROR IS CLEARED.

IF AN ERROR IS FOUND IN THE STATIC RAM, THERE WILL BE SHORT BURSTS OF FLASHING HORIZONTAL BARS DISPLAYED ON THE SCREEN. IT WILL THEN CYCLE THROUGH THE SCREEN RAM TEST AND THE STATIC RAM TEST AGAIN UNTIL THE ERROR IS CLEARED. THE CYCLE TIME IS APPROXIMATELY 3 SECONDS.

RAM-ROM TEST - SPACE ZAP

A BAD ROM/EPROM IS INDICATED BY A NUMBER 1, 2, 3, 4, 5, 6, 7, OR 8 DISPLAYED ON THE SCREEN. IF MORE THAN ONE ROM/EPROM IS BAD BOTH NUMBERS WILL APPEAR ON THE SCREEN.

IF YOU HAVE 8 2K ROMS/EPROMS


NUMBER DISPLAYED	BAD ROM/EPROM IN SOCKET
1	X1
2	X2
3	X3
4	X4
5	X5
6	X6
7	X7
8	X8

IF YOU HAVE 4 4K ROMS/EPROMS

NUMBER DISPLAYED	BAD ROM/EPROM IN SOCKET
1	X1
2	X1
3	X3
4	X3
5	X5
6	X5
7	X7
8	X7

.

TEST DISPLAY FOR GORF

ABCDEFGH

A LETTER APPEARING HERE INDICATES A BAD ROM/E PROM

Placing the test switch (located on the Audio amplifier assy. in the coin box area) to ''on'' performs the following functions:

- 1. Removes all accumulated credits.
- 2. Test the screen rams.
- 3. Test the static rams.
- 4. Test all switches.

If a screen ram is defective random bars will flash on screen.

If a static ram is defective a random dotted pattern will flash on screen.

Dotted pattern will flash on the screen. If all rams are good the switch test pattern will appear on the screen.

All switches must be ''off'' to get the pattern shown above. When each switch is turned on the position of that switch will disappear.

Time delay between returning test switch to ''off'' and game over sequence is normal approx. 25 seconds.

CARD RACK BOARD TEST

RAM TEST

- 1. Remove Game Card PC A084-90708-A902 & Rom Ram Card A082-91364-A000.
- 2. Remove Pattern Card PC A084-91355-C000.
- 3. Remove Ram Card in position J-2 PC A082-91356-B000.
- 4. The Ram Card in position J-1 must remain and be a known good card.
- 5. Do not remove the CPU Card A082-91354-E000.
- 6. Insert the Card Rack Board Tester PC A080-91517-A000 into position J-4.
- 7. Insert the Ram Test Card into position J-6 PC A080-91516-A000.
- 8. Insert the bad Ram Card into 18 pin connector of Ram Card Tester.
- 9. Connect video cable to connector J-2 of Card Rack Board Tester pins 11 and 12.
- 10. Move black slide switch on Card Rack Board Tester into position #1.
- 11. The dip switch settings must be as follows: 1 3 5 7 OFF and 2 4 6 8 ON.
- 12. Press Red reset button (S-1) on Ram Test Card to clear system.
- 13. A bad Ram location will flash on video screen and on flashing Rams indicate all Rams are good.
- 14. Move black slide switch on Card Rack Board Tester to position #2.
- 15. Clear system again by pressing Red reset button on Ram Test Card S1.
- 16. If the Rainbow test shows Garbage, check the video output. (74LS166)
- 17. When Rams are all good and Rainbow pattern is clear this indicates a good Ram Card.
- 18. Proceed to Pattern Card Test.

PATTERN BOARD TEST

- 1. Remove Ram Test Card PC A080-91516-A000.
- 2. Remove Card Rack Board Tester Card from J-4 and insert it into J-6 A080-91517-A000.
- 3. Remove the two Ram Test Proms located at X-4 and X-5 of Card Rack Board Tester.
- 4. Insert two Pattern Test Proms at location X-4 and X-5.
- 5. Connect video cable to connector J-2 of Card Rack Board Tester pins 11 and 12.
- 6. Insert bad Pattern Card into 50 pin connector of Card Rack Board Tester.
- 7. Press Red reset button to clear system.
- 8. A bad Pattern Card will display area of trouble on video screen.
- 9. A good Pattern Card will display the words ("LOOKS GOOD").
- 10. Connectors J-1 and J-5 are not used at this time.
- 11. The Dip Switch is for future use.
- NOTE: When chip U-2 (74S138) is removed the Card Rack Board Tester Card PC A080-91517-A000 can be used as an extender card for powering up the CPU, Pattern and Game Cards.

The black slide switch should be in position #1 when X4 & X5 Roms are in proper location.

For proper Pattern Test, two Ram Cards must be used. PC A082-91356-B000.

MIDWAY'S CARD RACK SYSTEM

PATTERN BOARD TEST

FATAL ERRORS		LOCATION
DATA LATCHES		U19 & U10 74LS175
FLUSH DATA BIT 08		U21 PIN 10 74174
DIRECTION DATA BIT 01		U21 PIN 2 74174
AREA AND LINEAR HIGH 2 BITS	LINEAR:	U7 PIN 3 & 13 U8 PIN 10 & 13
	AREA:	U9 PIN 3 & 13 U8 PIN 11 & 14
TRI - STATE BUFFERS		U20 & U11 74LS367
CONTROL LOGIC (CLOCK)		U5 - 74LS161 U6 - 74LS04 U12 - 74LS00

1. U21 74LS174 IS THE STATUS LATCH.

PIN2 DIRECTIONPIN5 EXPANDPIN7 CONSTANTPIN10 FLUSHPIN12 FLIPPIN15 FLOP

THE U21 STATUS CHIP WILL CONTROL THE SHIFTING OF DATA IN A CERTAIN DIRECTION, MAKING A LARGER OBJECT, MOVING THE SAME SIZE OBJECT, TURNING OR ROTATING THE OBJECT, ETC.

2. THE HEX. CODE 08 AND 01 IS CONVERTED INTO A BINARY CODE:

08 = 0000100001 = 00000001

3. FLUSH SETS MEMORY TO A FIX COLOR.

MIDWAY'S CARD RACK SYSTEM

PATTERN BOARD TEST

ERRORS	LOCATION
1. DATA BUS	U10 & U19
2. LINEAR	U7, U16, U25 & U34
3. AREA LD	U27, U30, U36 & U39
4. X WIDE	U31, U32, U33, U40, U41 & U42
5. FEED BK	U28, U29, U37 & U38
6. STATUS	U21
7. LINEAR CT	U7, U8, U16, U17, U25, U26, U33 & U34
8. AREA CT	U9, U15, U17, U18, U23 & U24

STATUS (U21)

ERRORS	LOCATION
FLOP	PIN 15
FLIP	PIN 12
FLUSH	PIN 10
CONSTANT	PIN 7
EXPAND	PIN 5
DIRECTION	PIN 2

PATTERN BOARD THEORY OF OPERATION

MIDWAY'S CARD RACK SYSTEM

This explanation of the theory of operation is intended to be very basic and not a chip-by-chip or signal-by-signal explanation. There are some complicated features of this assembly that would take too much room to explain nor would it serve any useful purpose for the service technician.

The function of this board is to move blocks of data from one memory location to another at a fast rate. In the Card Rack System this translates into the ability to transfer a pattern on the screen (or from ROM) to another location on the screen.

Parameters are passed to the Pattern Board by a series of output instructions to ports 78 through 7E. IC's U1, U2, U4 and portions of U3, U6 and U14 perform the port decoding.

The follwing is a sequence of events in a typical operation of transferring a color encoded pattern from ROM to screen RAM.

The mode control byte is loaded into U21 by an output instruction to port 7A. Here the various modes of operation are selected.

The sixteen-bit linear address (which is usually the source address) is loaded into U34, U25, U16 and U7. The low-order eight bits are loaded into U34 and U25 by an output instruction to port 78. The high-order eight bits are loaded into U16 and U7 by an output instruction to port 79.

The sixteen-bit area address (which is usually the destination) is loaded into U39, U30, U18 and U9. The low-order eight bits are loaded into U39 and U30 with an output instruction to port 7B. The high-order eight bits are loaded into U18 and U9 with an output instruction to port 7C.

A line offset value is loaded into U39 and U30 with an output instruction to port 7B.

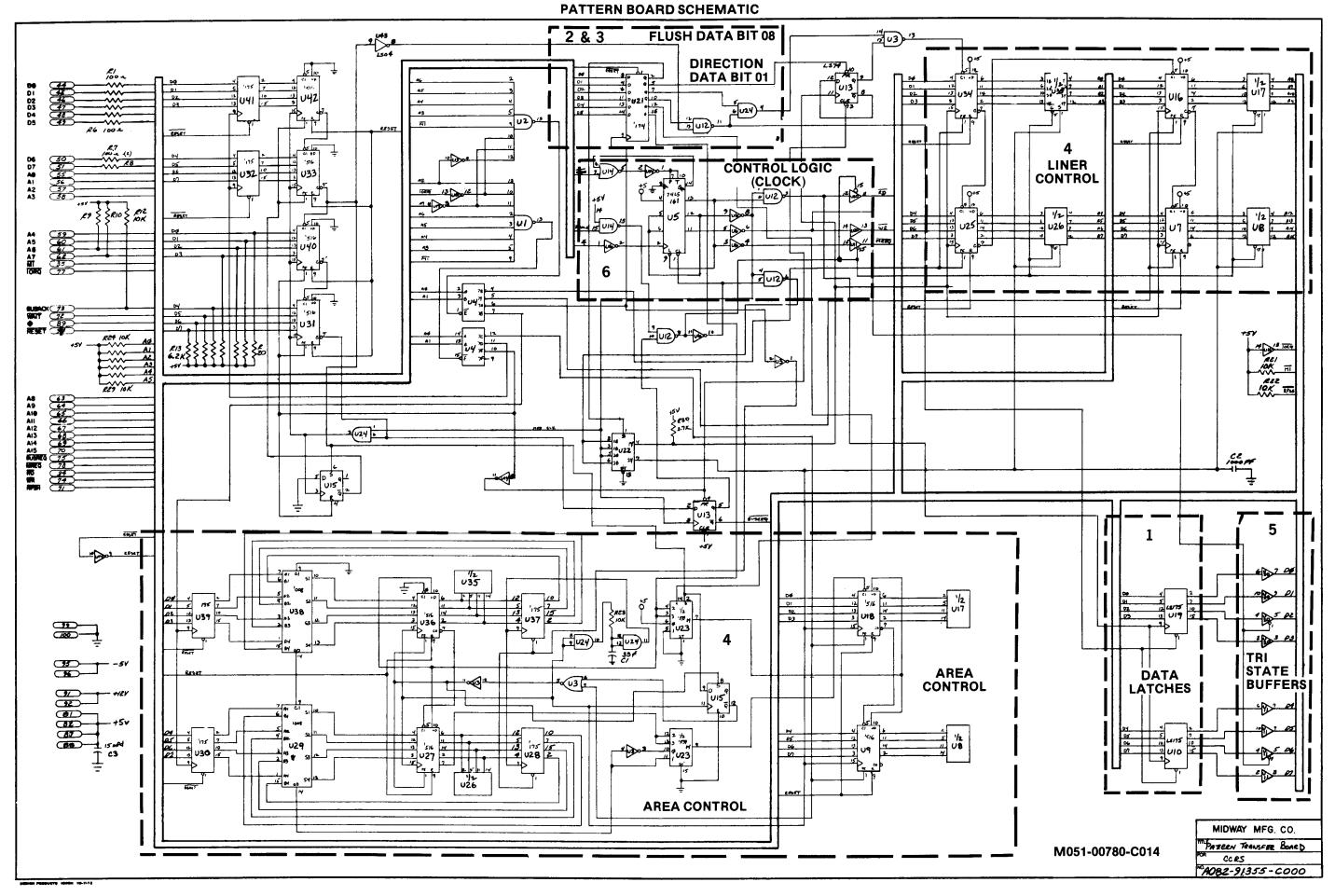
The width of the pattern is loaded into U41 and U32 with an output instruction to port 7D. The height of the pattern is loaded into U40 and U31 with an output to port 7E. This instruction also starts the following sequence to perform the actual pattern transfer.

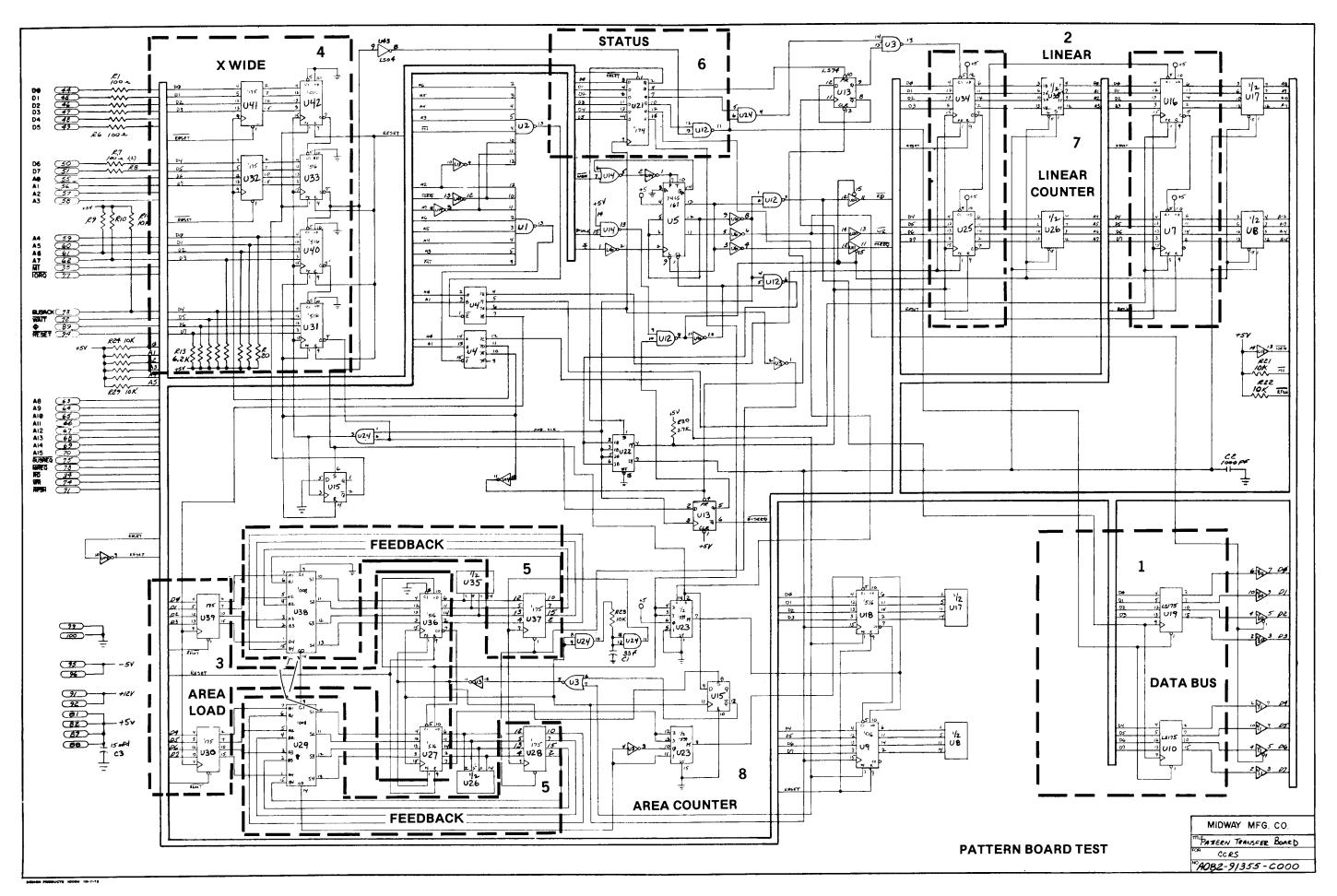
The output to port 7E persets one-half of U13 sending the signal BUSREQ low. The Z-80 (located on the CPU board) responds by tri-stating its address, data and control signals and then asserting BUSACK low.

PATTERN BOARD THEORY OF OPERATION

When BUSACK goes low, the control signal buffers for RD, WR, MREQ and IORQ are enabled placing the control signals on the bus; the tri-state address multiplexers U35, U26, U17, U8 and data buffers U20 and U11 are enabled placing their signals on the bus; and the master clock generator U5 starts counting. During the time that this Pattern Board has control of the bus, the signal appear identical to those created by the Z-80.

The first cycle is a read from the address contained by the linear address counters with the data hold registers U19 and U10.


The next cycle is a write cycle to the address contained in the area address counters. The data is placed on the data bus by the tri-state buffers U20 and U11.

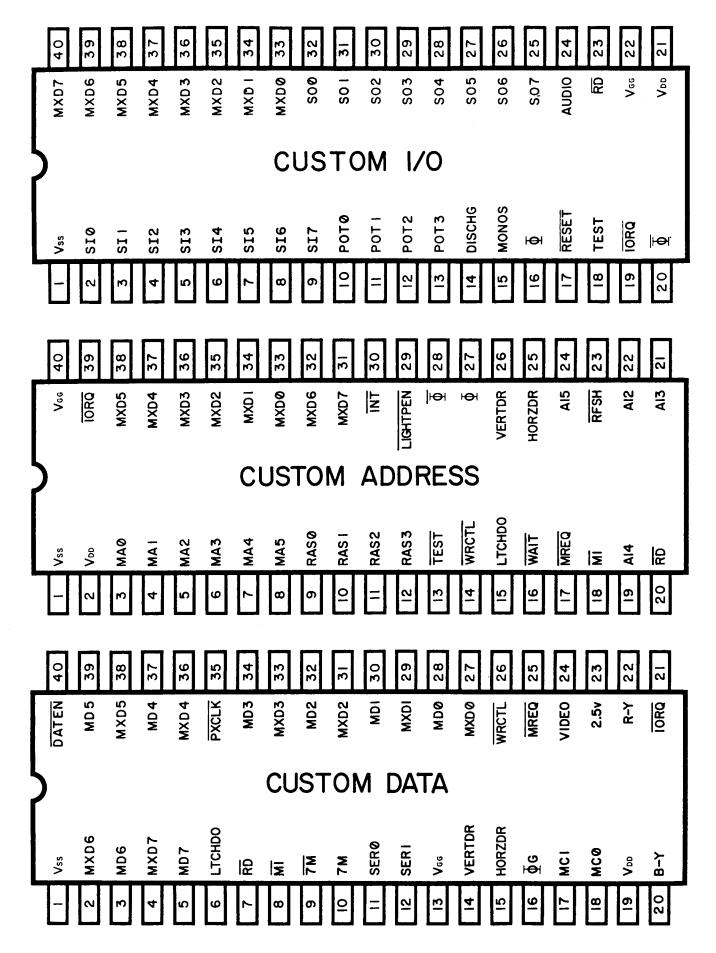

This typical read-write cycle continues until the width counters U42 and U33 count down to zero. This completes one horizontal line of data transfer.

To prepare for the next horizontal line of data transfer two things must occur. First, the width count contained in U41 and U32 is loaded into U42 and U33. Simultaneously the height count contained in U40 and U33 is decremented. Second, the distance to the starting point on the next line, contained in U39 and U30 is added (through U38 and U29) to the present count contained in U37 and U28 and then loaded into counters U36 and U27.

These line transfers count until the height counters U40 and U31 reach zero.

At this time, BUSREQ is taken high disabling the clock generator U5 from any further activity. Also all data, address and control lines are tri-stated off of the bus returning control to the Z-80. The Z-80 responds by taking BUSACK high and continuing with its normal operation.

TROUBLE SHOOTING CARD RACK SYSTEM


All test points are found on the rear side of the Back Panel Board PC A082-93006-C/D000.

- 1. + 5VDC PINS 87 AND 88.
- 2. + 12VDC PINS 91 AND 92.
- 3. -5VDC PINS 95 AND 96.
- 4. LOGIC GROUND PINS 99 AND 100.
- 5. SYSTEM CLOCK 7.1MHZ PINS 97 AND 98.
- 6. VIDEO CLOCL 3.5MHZ PINS 93 (CHROM).
- 7. CPU CLOCK 1.7MHZ PINS 89 AND 90.
- 8. CPU RESET PIN 94 (NORMALLY HIGH).
- 9. DATA BITS (0-7) PINS 44 TO 51.
- 10. ADDRESS BITS (0-15) PINS 55 TO 70.
- 11. COMPOSITE VIDEO PIN 85.

For all Additional Test Points refer to Page #15.

BACK PANEL BOARD PC A082-93006 C/D000

PIN	DESIGNATION	DESCRIPTION	PIN	DESIGNATION	DESCRIPTION
1	S/Ī	Screen RAM Video Load Strobe	51	D7	Data Bit 7
2	WE	Write Enable	52	SCREEN	Soreen RAM Decode
3	SER1	Sorial Data 1	53	RMCO	Refresh Microcycle Control O
Ă	SERO	Serial Data O	54	RMC1	Refresh Microcycle Control 1
5	RASS	Row Address Strobe 3	55	AO	Address Bit 0
6	RASZ	Row Address Strobe 2	56	A1	Address Bit 1
7	RASI	Row Address Strobe 1	57	A2	Address Bit 2
8	RASO	Row Address Strobe 0	58	A3	Address Bit 3
ŷ	CAS	Column Address Strobe	59	A4	Address Bit 4
10	DATEN	Data Write Enable	60	A 5	Address Bit 5
11	MAO	Multiplexed Address Bit 0	61	AG	Address Bit 6
12	MA1	Multiplexed Address Bit 1	62	A7	Address Bit 7
13	MAC	Multiplexed Address Bit 2	63	A 8	Address Bit 8
14	MA	Multiplexed Address Bit 3	64	A 9	Address Bit 9
15	MA	Multiplexed Address Bit 4	65	A10	Address Bit 10
16	MA5 25	Multiplexed Address Bit 5	66	A11	Address Bit 11
17	ND7	Memory Data Bus Bit 7	67	A12	Address Bit 12
18	MD6	Memory Data Bus Bit 6	68	A13	Address Bit 13
19	ND 5	Memory Data Bus Bit 5	69	A14	Address Bit 14
20	ND4	Memory Data Bus Bit 4	70	A15	Address Bit 15
21	MD3	Memory Data Bus Bit 3	71	RFSH	Dynamic RAM Refresh
22	MD2	Memory Data Bus Bit 2	72	WAIT	Wait
23	MD1	Memory Data Bus Bit 1	73	BUSACK	Bus Acknowledge
24	MDO	Memory Data Bus Bit 0	74	WR	Write
25	BUFAO	Buffered Address Bit 0	75	BUSREQ	Bus Request
26	BUFA1	Buffered Address Bit 1	76	NMI	Non-maskable Interrupt
27	BUZOFF	Microcycle Data Bus Disable	17	IORQ	Input/Output Request
28	WATCHDOG	Automatic Reset	78	MREQ	Memory Request
29	LIGHTPEN	Lightpen Interrupt	79	HALT	Halt CPU stopped
30	VERTOR	Vertical Sync	80	INT	Interrupt Request
31	HORZDR	Horizontal Sync	81	+5 v	Positive 5 volt Power Supply
32	MCO	Microcycle Control O	82	+5 v	Positive 5 volt Power Supply
33	MC1	Microcycle Control 1	83	R-Y	Red minus Video
34	RD	Read	84	В-Ү	Blue minus Video
35	M1	Machine Opcode Cycle	85	VIDEO	Composite Video
36	MXDO	Microcycle Data Bus Bit O	86	+2.5 vREF	2.5 volt Chroma Center Reference
37	MXD1	Microcycle Data Bus Bit 1	87	+5 v	Positive 5 volt Power Supply
38	MXD2	Microcycle Data Bus Bit 2	88	+5 v	Positive 5 volt Power Supply
39	MXD2 MXD3	Microcycle Data Bus Bit 3	89	Ф Ф	CPU Clock 1.7897725 Mhz
40	MXD4	Microcycle Data Bus Bit 4	90	Ē	Opposite phase CPU Clock 1.7897725 Mhz
40	MXD5	Microcycle Data Bus Bit 5	91	+12v	Positive 12 volt Power Supply
42	MXD5 MXD6	Microcycle Data Bus Bit 6	92	+12 v	Positive 12 volt Power Supply
43	MXD7	Microcycle Data Bus Bit 7	93	CHROMA	3.579545 Mhz Chroma Subcarrier
43	DO	Data Bit O	94	RESET	Reset
45	D 0 D 1	Data Bit 1	95	- 5 v	Negative 5 volt Power Supply
46	D 2	Data Bit 2	96	-5 v	Negative 5 volt Power Supply
47	D 3	Data Bit 3	97	7 M	System Clock 7.15909 Mhz
48	D 5 D 4	Data Bit 4	98	7M	Opposite phase system clock 7,15909 Mhz
49	D 5	Data Bit 5	99	GND	System Power and Logic Ground
50	D 6	Data Bit 6	100	GND	System Power and Logic Ground

I/O CHIP DESCRIPTION

The Z-80 communicates with the I/O Chip through Input and Output instructions. The state of an 8 x 8 switch matrix can be read through the Switch Scan circuit. When an Input instruction is executed, one of the SO0-SO7 lines will be activated. When a line is activated, the switch matrix will feed back eight bits of data on SI0-SI7. This data is in turn fed to the Z-80 through MUXD0 - MUXD7.

The Z-80 can read the position of four potentiometers (pots) through the A-D Converter circuit. The pots are continuously scanned by the A-D Converter and the results of the conversion are stored in a RAM with Input instructions.

The Z-80 loads data into the Music Processor with Output instructions. This data determines the characteristics of the audio that is generated.

ADDRESS CHIP DESCRIPTION

THE Microcycle Decoder generates twelve bits of Z-80 address from the 8-bit Microcycle Data Bus. This address is then fed through MUX I and MUX II to MA0-5 which go to the RAM. The Scan Address Generator generates a 12-bit address which is used to read video data from the RAM. This address goes from 0 to FFFH once every frame (1/60 sec.).

MUX I sends either the Scan Address of Z-80 Address to its 12 outputs. An output of the Scan Address Generator controls MUX I. If the Scan Address Generator and the Z-80 request a memory cycle at the same time, the Scan Address Gererator will have higher priority and the Z-80 will be required to wait (by the WAIT output). The Scan Address Generator never requires the memory for more than one consecutive memory cycle, so the Z-80 is never required to wait for the memory for more than one cycle. HORIZ DR and VERT DR synchronize the Scan Address Generator with the Data Chip and the TV Scan.

The purpose of MUX II is to multiplex its 12 inputs to the six address bits in the two time slices required for 4K x 1 16 pin RAMS.

The Memory Cycle Generator controls memory cycles generated by either the Z-80 or Scan Address Generator. \overrightarrow{MREQ} , \overrightarrow{RD} , $\overrightarrow{M1}$, \overrightarrow{RFSH} , and A12-A15 are from the Z-80. A12-A15 are fed directly from the Z-80 because if they were brought out of the Microcycle Decoder, they would arrive too late in the memory cycle. The RAS0 - RAS3 outputs are used to activate memory cycle and all four RAS's are used to control four banks of RAM (16K x 8). WRCTL and LTCHD0 are control signals to the Data Chip. WRCTL tells the Data Chip when to place data to be written to memory on the Memory Data Bus. LTCHD0 tells the Data Chip when valid data from RAM is present on the Memory Data Bus.

DATA CHIP DESCRIPTION

The TV Sync Generator uses 7M and $\overline{7M}$ (7.159090 MHZ square waves) to generate NTSC standard sync and blank to be sent to the Video Generator. It also generates HORIZ DR and VERT DR for synchronization with the Address Chip. HORIZ DR occurs once every horizontal line (63.5 usec), and VERT DR occurs once every frame (16.6 msec).

The Shift Register loads parallel data from the memory data bus (MD0 - MD7) and shifts it out of its two serial outputs. The TV Sync Generator controls when data is loaded or shifted. In a commercial game SERIAL 0 and SERIAL 1 are sent through the MUX I to MUX II. The two bits from MUX I select 8 bits to be sent through MUX II to the Video Generator. These 8 bits then determine the analog values of VIDEO, R-Y, and B-Y. 2.5V is a 2.5V D C reference level.

The Clock Generator generates 0G and \overline{PX} from 7M. These are the clocks for the rest of the system. The frequency of \overline{PX} is half that of 7M and the frequency of 0G is half that of \overline{PX} .

The Microcycle Generator generates the microcycle control bits, MC0 and MC1, from \overline{IORQ} , \overline{MREQ} , \overline{RD} , and $\overline{M1}$, all from the Z-80.

In memory write cycles WRCTL is activated and the Memory Control circuit generates DATEN. The Magic Function Generator takes the data from the Z-80 on MUXD0 - D7 and transfers it to MD0 - MD7. If a Magic write is being done, the Magic Function Generator will modify the data as required before it places it on the memory data bus.

CARD RACK LOGIC BOARDS

SPACE ZAP GAME BOARD (PC A084-90708-A902) PATTERN BOARD (PC A082-91355-C000)

FUNCTION
Quad 2 input Nor
Quad 2 input And
Quad 2 input Or
Dual ''D'' Flip-Flop
13 input Nand
3 to 8 line decoder
Dual 2 to 4 line decoder
8 input Nor
Hex ''D'' Flip-Flop
RAM
PROM 16K
ROM 16K
I & O custom chip
NPN transistor
NPN transistor
PNP transistor
Diode

CPU BOARD (PC A082-91354-D000)

CHIP NUMBER	FUNCTION					
74LS00	Quad 2 input Nand					
74LS02	Quad 2 input Nor					
74LS04	Hex inverter					
74LS08	Quad 2 input And					
74LS10	Triple 3 input Nand					
74LS20	Dual 4 input Nand					
74LS74	Dual ''D'' Flip-Flop					
74LS157	Quad 2 input multiplexer					
74LS174	Hex ''D'' Flip-Flop					
74LS175	Quad ''D'' Flip-Flop					
Z80	CPU					
2719-(0066-115)	Address custom chip					
2721-(0066-116)	Data custom chip					
74LS245	Octal bus transceiver					
74LS257	Quad 2 input multiplexer					
74S74	Dual ''D'' Flip-Flop					
7416	Hex buffer					
MC14024	7 stage ripple counter					
Additional Devices:						
2N4401	NPN transistor					
T1S-137	PNP transistor					
IN4004	Diode					
IN4148	Diode					
14.31818	Crystal					
47 Ω	Resistor					
82 Ω	Resistor					
220 Ω	Resistor					
510 Ω	Resistor					
680 Ω	Resistor					
1Κ Ω	Resistor					

CHIP NUMBER FUNCTION	
74LS00 Quad 2 input Nand	
74LS04 Hex inverter	
74LS74 Dual ''D'' Flip-Flop	
74LS157 Quad 2 input multiplexer	
74LS161 4 bit binary counter	
74LS175 Quad "D" Flip-Flop	
74LS257 Quad 2 input multiplexer	
74LS367 Hex bus driver	
CD4555 Dual binary 1 or 4 decode	r
MC14008 4 bit full adder	
MC14013 Dual "D" Flip-Flop	
MC14068 8 input Nand	
MC14174 Hex ''D'' Flip-Flop	
MC14175 Quad ''D'' Flip-Flop	
MC14516 Binary up/down counter	
MC14539 Dual 4 input multiplexer	
MC14572 Multiple gate package	

RAM BOARD (PC A082-91356-C000)

CHIP NUMBER	FUNCTION
74LS08	Quad input And
74LS14	Hex schmitt trigger
74LS166	Parallel to serial shift register
74LS253	Dual 4 input multiplexer
MK4027 (MK4015)	RAM
Additional Devices:	
110 Ω	Resistor
220 ^Ω	Resistor
1Κ Ω	Resistor
0.1 µfd	Capacitor
15 <i>µ</i> fd	Capacitor

AUDIO AMPLIFIER BOARD

(PC A062-90903-A000)						
CHIP NUMBER	FUNCTION					
2N4403	PNP transistor					
TIP 31	NPN transistor					
IN4004	Diode					

POWER SUPPLY (PC A082-90411-A000)

CHIP NUMBER	FUNCTION
LM317	Voltage regulator
LM339	Quad voltage comparator
SG3532	General purpose regulator
Additional Devices:	
79M05	Negative five voltage regulator
IN3235	Zener diode
2N3055	NPN transistor

MONITOR INTERFACE BOARD (PC A082-91373-B000)

CHIP NUMBER	FUNCTION
LM339	Quad voltage comparator
LM360	Differential comparator
Additional Devices:	
MPS AZ0	Transistor
MPS A70	Transistor

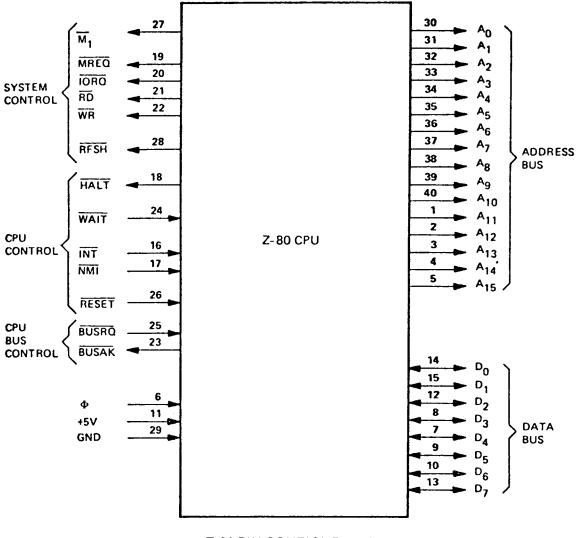
NOTE: When an IC is a LS, it should be replaced by a LS device (low schottky).

GORF GAME BOARD

PC A084-90708-A873

CHIP NUMBER	FUNCTION
74LS04	Hex inverter
74LS30	8 input Nand
74LS74	Dual ''D'' Flip-Flop
74LS86	Quad 2 input exclusive or
74LS153	Dual 4 to 1 line multiplexer
74LS161	4 bit binary counter
74LS164	8 bit shift register
74LS174	Hex ''D'' Flip-Flop
74LS257	Quad 2 to 1 line multiplexer tri-state
74LS367	Hex bus driver-tri-state
0066-117XX (2720)	Custom I/O chip
MC14066	Quad bilateral switch - Cmos
MC14099	8 bit addressable - latch -
MC14099	8 bit addressable latch - Cmos
MC14539	Dual 4 to 1 line multiplexer - Cmos
SC01	Voice sound generator

GORF ROM/RAM BOARD PC A082-91364-A000

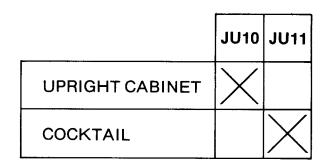

FUNCTION
Quad 2 input Nor
Quad 2 input And
8 input Nand
Quad 2 input Or
Dual "D" Flip-Flop
13 input Nand
3 to 8 line decoder/
multiplexer
Octal buffer
8 input Nor - Cmos
1K X 4 - Ram
4K X 8 - Rom

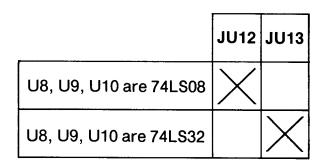
WIZARD OF WOR GAMEBOARD

WIEARD OF WORK	
PC A084-90708-A961	
CHIP NUMBER	FUNCTION
74LS04	Hex inverter
74LS30	8 input Nand
74LS74	Dual ''D'' Flip-Flop
74LS86	Quad 2 input exclusive or
74LS153	Dual 4 to 1 line multiplexer
74LS161	4 bit binary counter
74LS164	8 bit shift register
74LS174	Hex ''D'' Flip-Flop
74LS257	Quad 2 to 1 line multiplexer tri-state
74LS367	Hex bus driver-tri-state
0066-117XX (2720)	Custom I/O chip
LM358	OP-AMP
MC14099	8 bit addressable - latch -
MC14099	8 bit addressable latch - Cmos
MC14539	Dual 4 to 1 line multiplexer - Cmos
SC01	Voice sound generator

Z-80 CPU PIN DESCRIPTION

The Z-80 CPU is packaged in an industry standard 40 pin Dual In-Line Package. The I/O pins are shown in figure 3.0-1 and the function of each is described below.




Z-80 PIN CONFIGURATION FIGURE 3.0-1

STRAPPING CHART

EXTRA BASES & SPACE ZAP

	JU1	JU2	JU3	JU4	JU5	JU6	JU7	JU8	JU9
Single + 5 Volt 2716 EPROM	X			Х		Х		Х	
2316E ROM		\times		\times		\times		X	
2332 ROM		\times			\times		\times	X	
2364 ROM			\times		\times		Х		\times

STRAPPING CHART GORF

ROM / RAM BOARD

DOMESTIC FOR ROMS

	1	2	3	4	5	6	7	8	9
X-31 X-32	CLOSED	OPEN	OPEN	OPEN	CLOSED	OPEN	CLOSED	CLOSED	OPEN
X-33	CLOSED	OPEN	CLOSED	OPEN	OPEN	CLOSED	CLOSED	OPEN	

DOMESTIC FOR PROMS

	1	2	3	4	5	6	7	8	9
X-31 X-32	CLOSED	OPEN	CLOSED	OPEN	OPEN	OPEN	CLOSED	CLOSED	OPEN
X-33	CLOSED	OPEN	CLOSED	OPEN	OPEN	CLOSED	CLOSED	OPEN	

FOREIGN ROMS

	1	2	3	4	5	6	7	8	9
X-31	CLOSED	OPEN	CLOSED	OPEN	OPEN	CLOSED	OPEN	CLOSED	OPEN
X-32	CLOSED	OPEN	OPEN	OPEN	CLOSED	CLOSED	OPEN	CLOSED	OPEN
X-33	CLOSED	OPEN	CLOSED	OPEN	OPEN	CLOSED	CLOSED	OPEN	

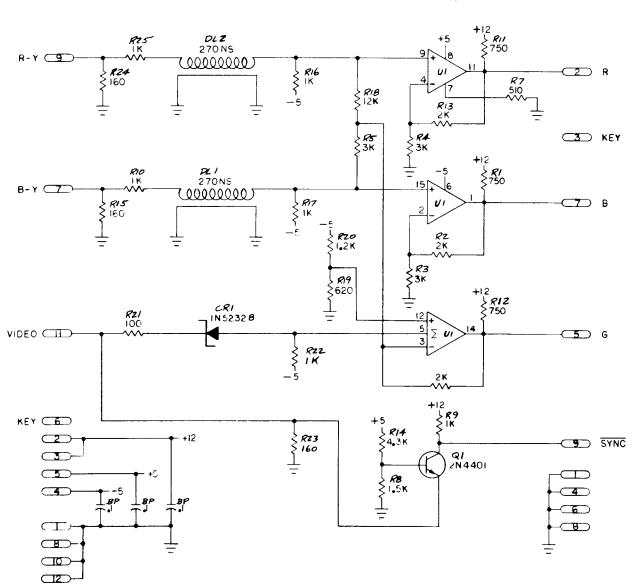
RAM/ROM BOARD

		LOCATION LOCATION	
 	 	 	U2, U3, U4, U5 U2, U3, U4, U5

GORF GAME BOARD

CUT	JUMPER	JU 2	FOR	VOC	AL SOUND
	JUMPER JUMPER				COCKTAIL UPRIGHT

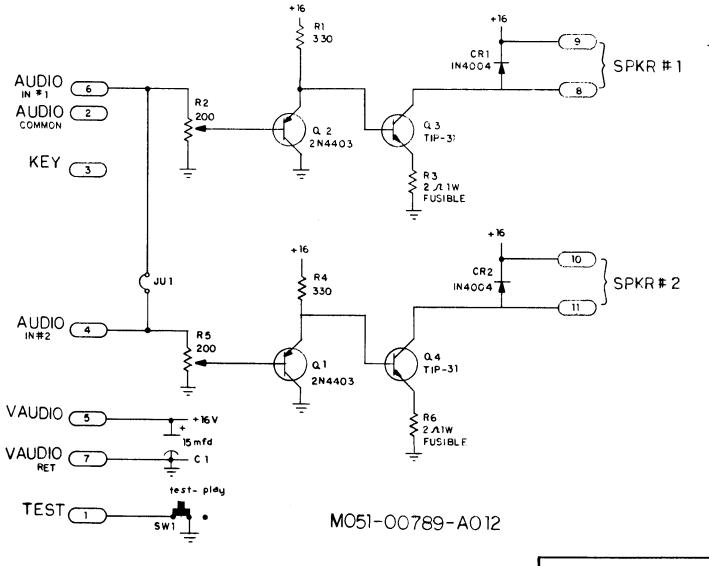
LOGIC TERMS Z-80 SYSTEM


ADD	Address
AUDIN	Audio In
BUSAK	Bus Acknowledge
BUSRO	Bus Request
BUZOFF	External Control
B-Y	Blue Minus Video
BYTE	Has Four Pixels
CE	Chip Select
CAS	Column Address Strobe
CASEN	CAS Enable
D-O	Data Out
D-1	Data In
DATEN	Data Enable
l or Q	Input-Output Request
HD	Horizontal Drive (63.5 us)
INT	Interrupt Request
1&0	Input - Output Signals
LTCHDA	Latch Data
LITE PEN	Interrupt Control
MD	Memory Data
MA	Memory Address
M1	Machine Cycle One
MREQ	Memory Request
MUXD	Multiplex Data
MC	Micro Cycle Control
MENEN	Memory Enable
NMI	Non Muskable Interrupt

OG	Phi-G Clock 1.7 MHZ
PX	Monitor Picture Clock 3.5 MNZ
РОТ	Control Potentionmeter
PIXEL	Smallest spot on color monitor screen with information
RAS	Row Address Strobe
RFSH	Refresh
RAMSEL	Ram Select
RD	Memory Read
R-Y	Red Minus Video
SYSEN	System Enable
SI	Signal In
SO	Signal Out
VD	Vertical Drive (16.6 MS)
VIDOT	Video Out
WE	Write
WRTCL	Write Control
WR	Memory Write

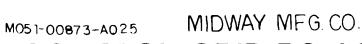
RESET

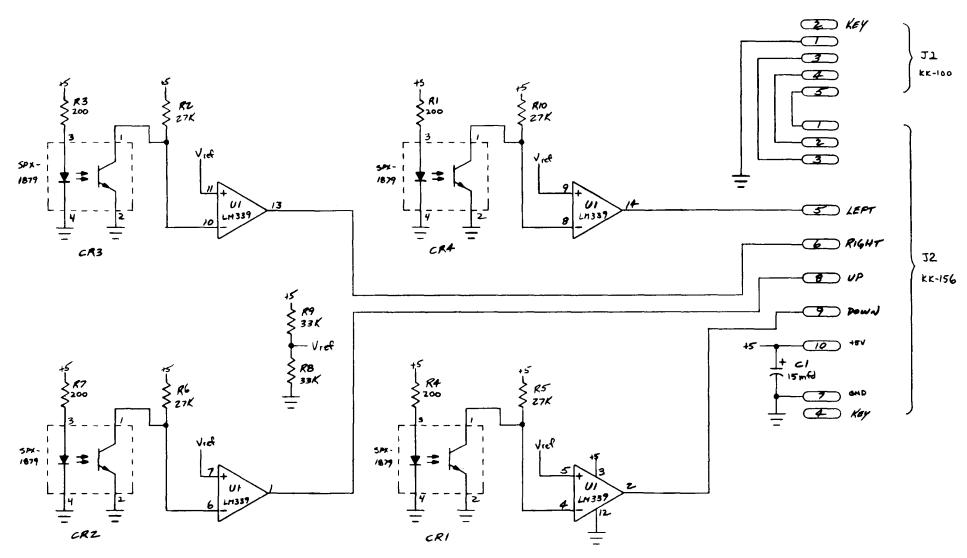
Normally high an active low resets the Z-80


R G B BOARD SCHEMATIC

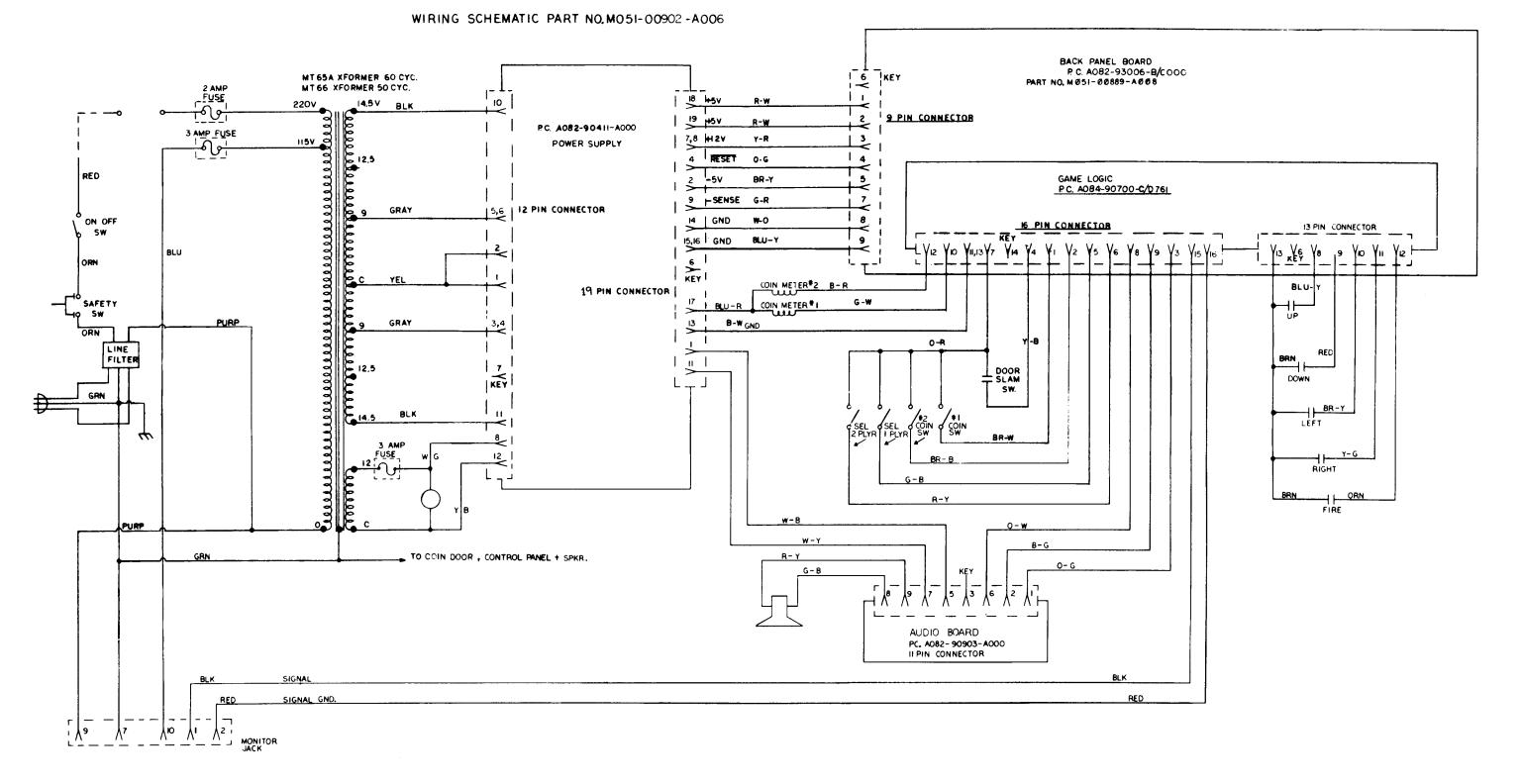
TBA- 530

M051-00873-A030

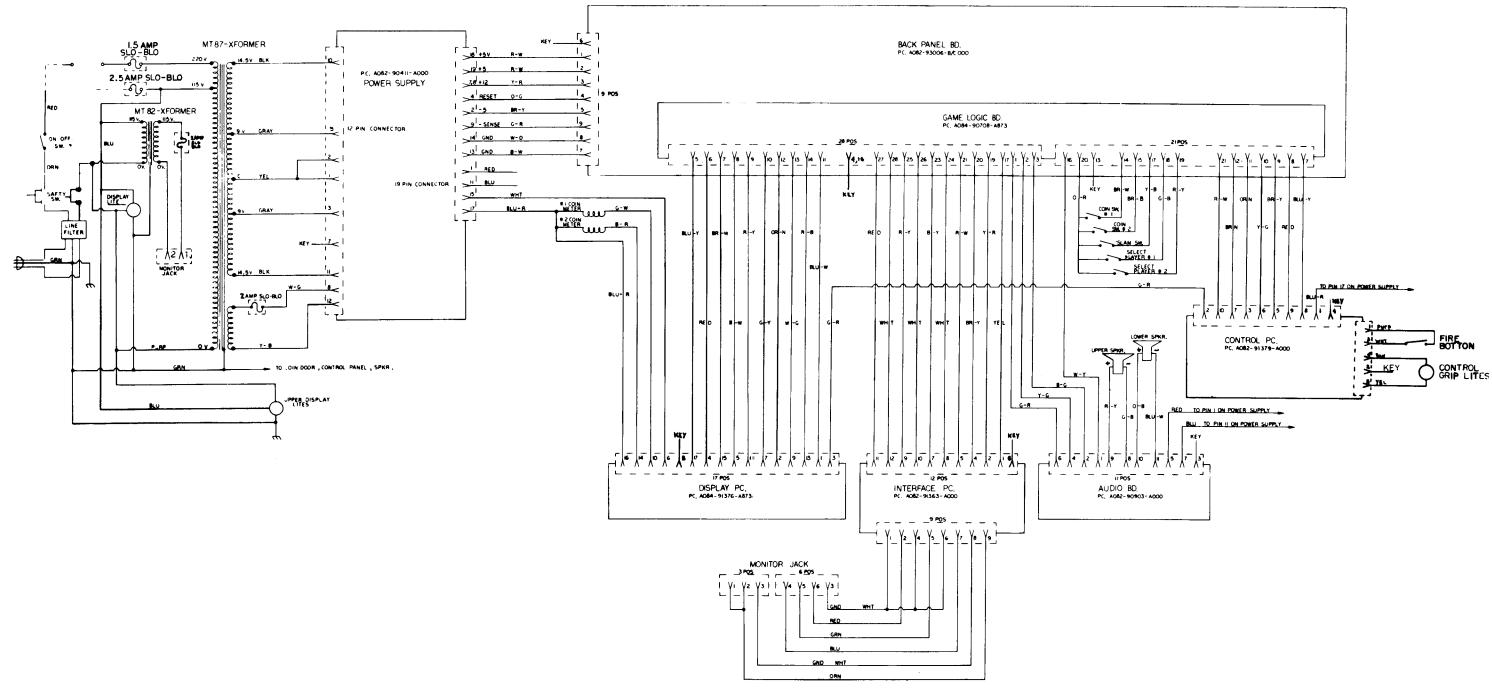

		NONE	04TE 18-29-80	MIDWAY MFG. C.O.
		MATERIAL	FINIS	TTLE RGB INTERFACE
t		TOLENANCES XX-1 D1		 FOR CCRS
	Red Fill PROD \$ 201/ 80	XXX -: 006 4004.48 :	_	 ^{NO} A082-91363-A000



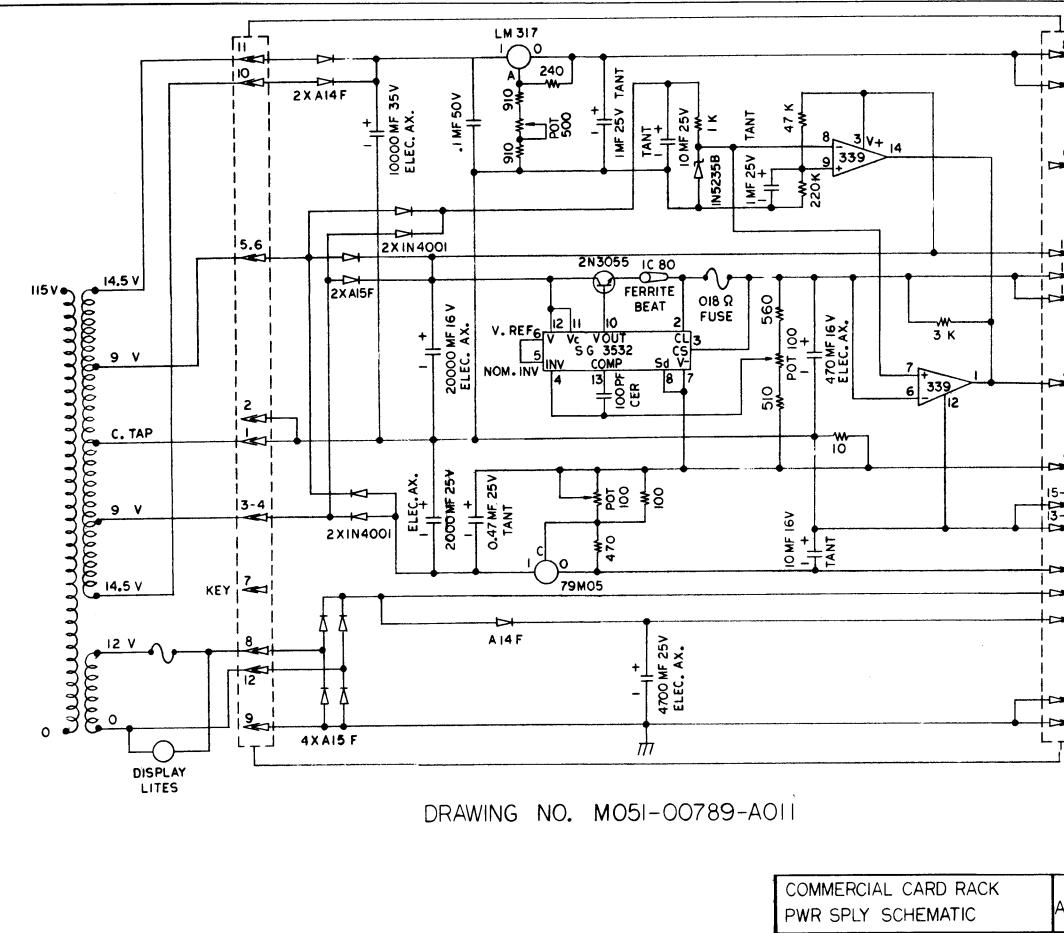
NOTE* * FCP MONO 1/2 CIRCUIT SHOWN IS USED FOR DUEL MONO BOTH CIPCUITS ARE USED JUMPER JUI IS USED FOR STERO BOTH CIRCUITS ARE USED JUMPER JUI IS NOT USED


1	PART NO.
AUDIO AMP BOARD	A082-90903-A000

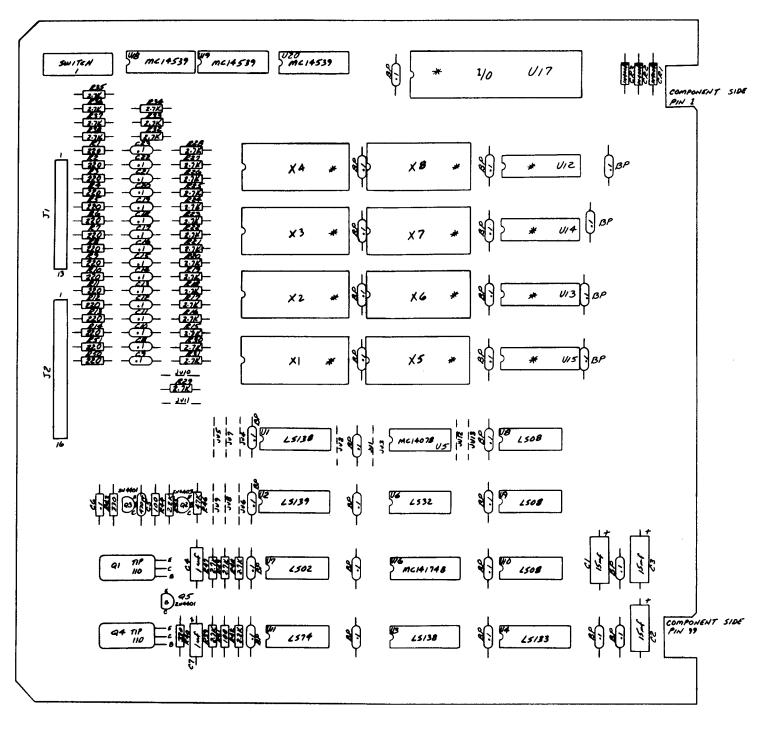
CONTROL GRIP PC ASSY A082-91379-A000


"SPACE ZAP" MIDWAY MFG. CO. 10750 W. GRAND AVE. FRANKLIN PARK, IL. 60131

29

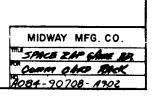

GORF U.R. MIDWAY MFG. CO. 10750 W. GRAND AVE. FRANKLIN PARK, IL. 60131

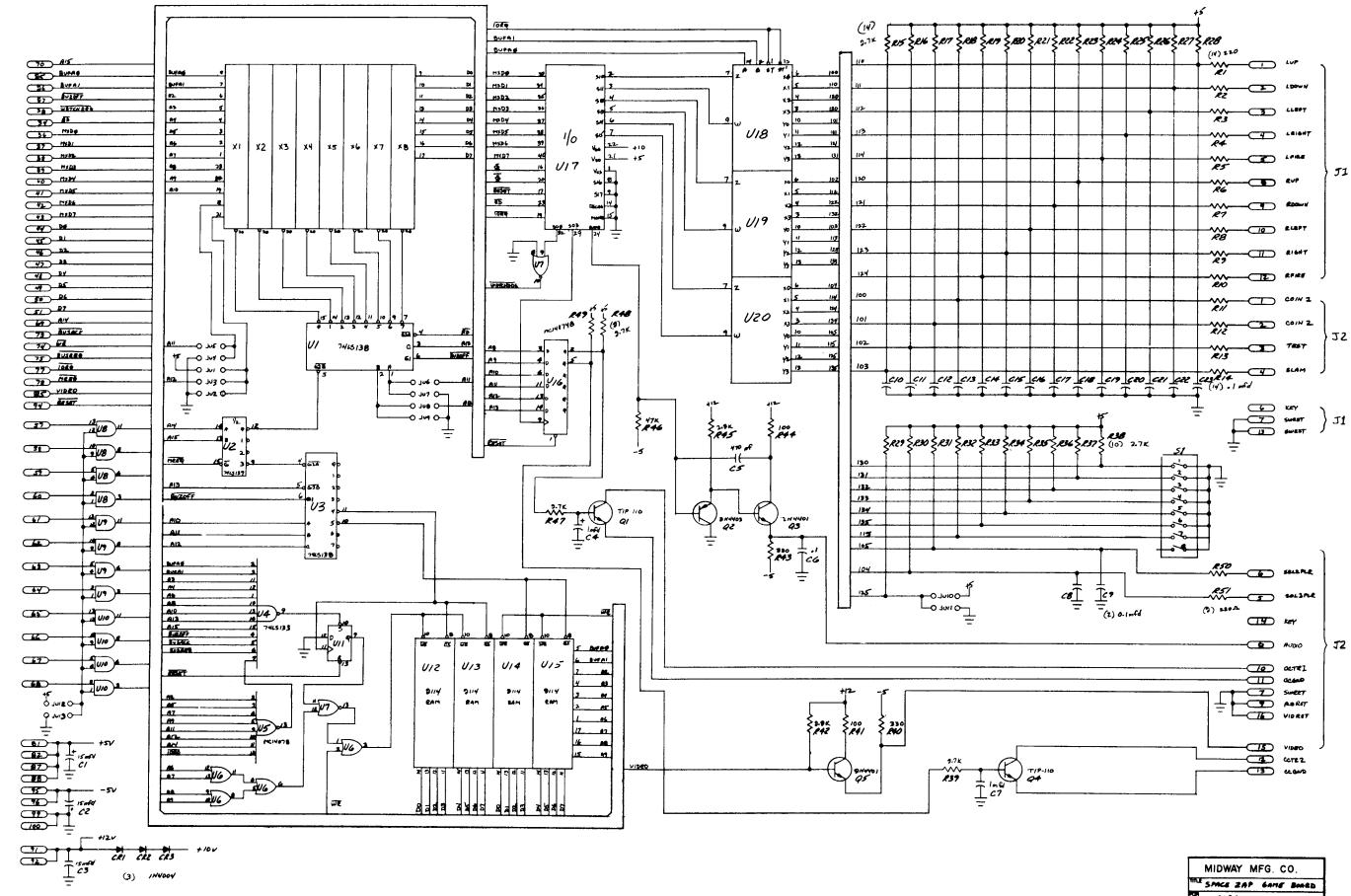
WIRING SCHEMATIC. MO51-00873-A037



30

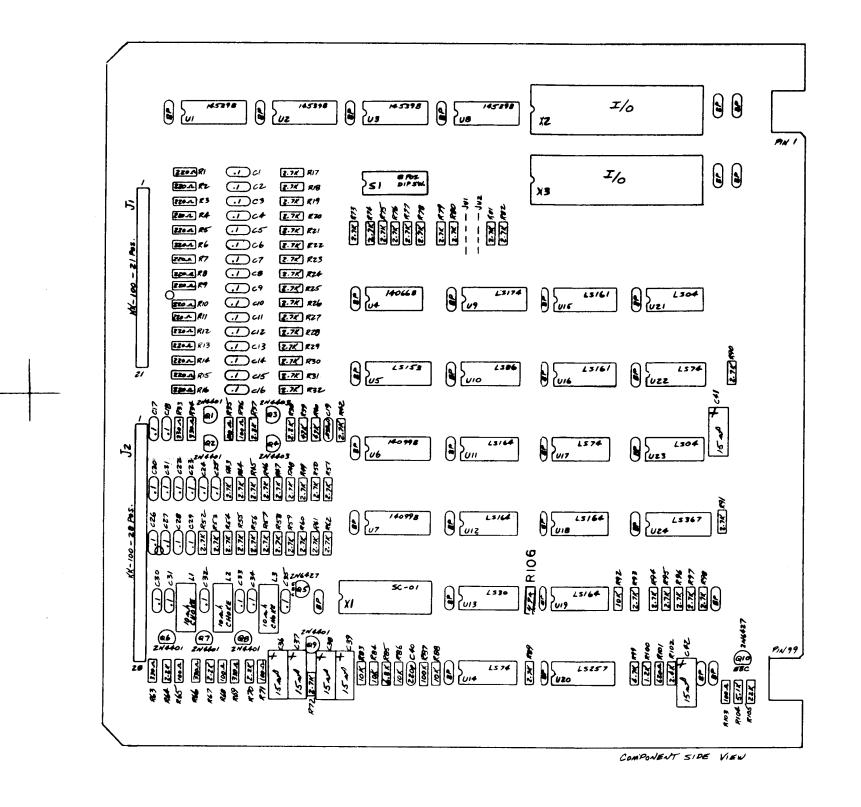
POWER SUPPLY SCHEMATIC


8	+12V 1.45 AMP
7	+12V
6	KEY
17	
19	+5V (2 AMP REG FOR LOGIC)
18	+5 V 3 AMP
4	RESET
9	COM
-14	СОМ
2	-5V (450 mA)
3	+ V. IND. ~10V RMS AT 3.5AMP + V. AUDIO ~13V AT 1.5 AMP
3	+ V. AUDIO ≃13V AT.1.5 AMP
3 - 2 =	+ V. AUDIO ≃13V AT.1.5 AMP - V. AUDIO - V. IND
3	+ V. AUDIO ≃13V AT 1.5 AMP - V. AUDIO - V. IND



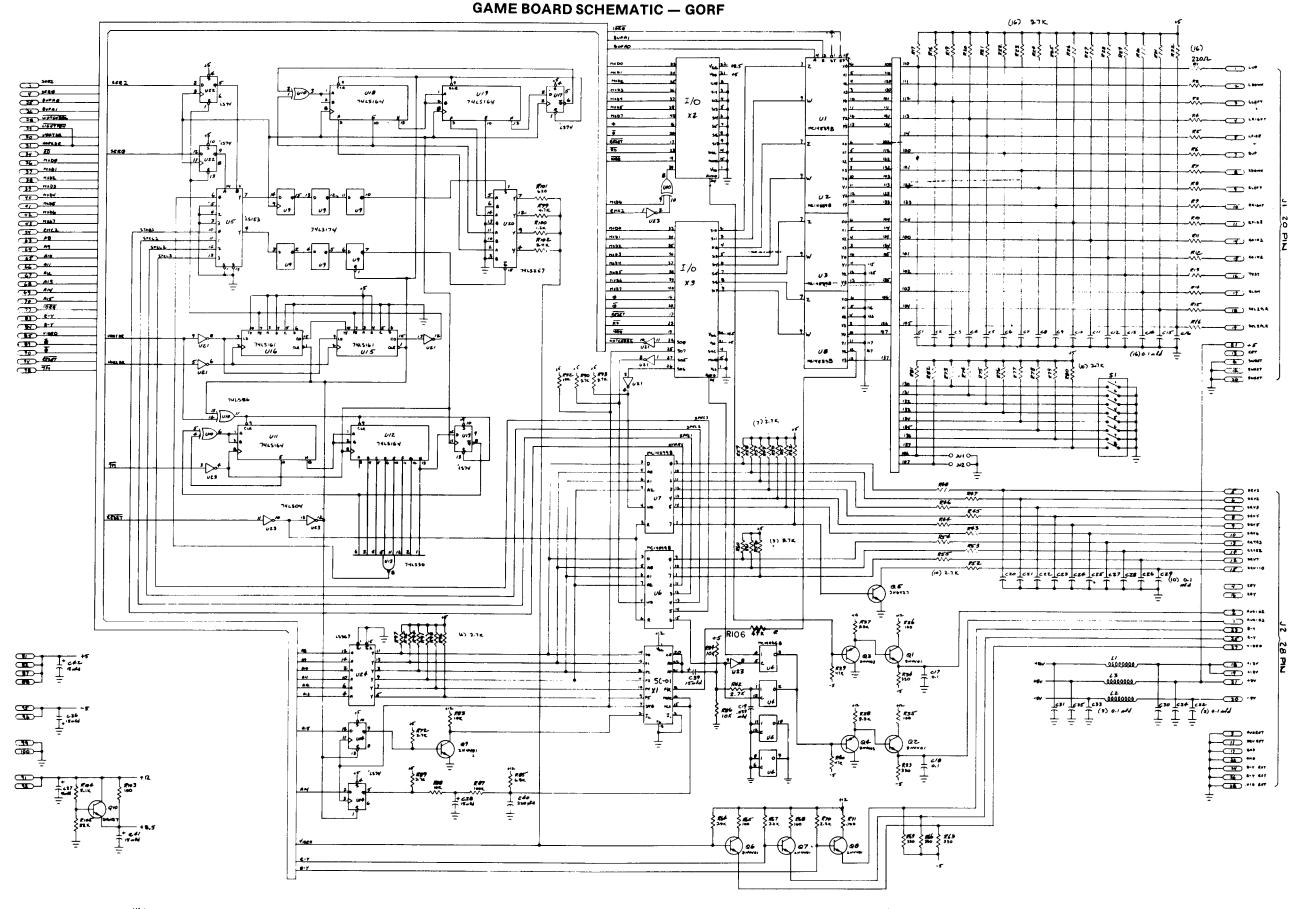
<u>COMPONENT</u> SIDE

* - POSITION TAKES A J.C. SOCKET

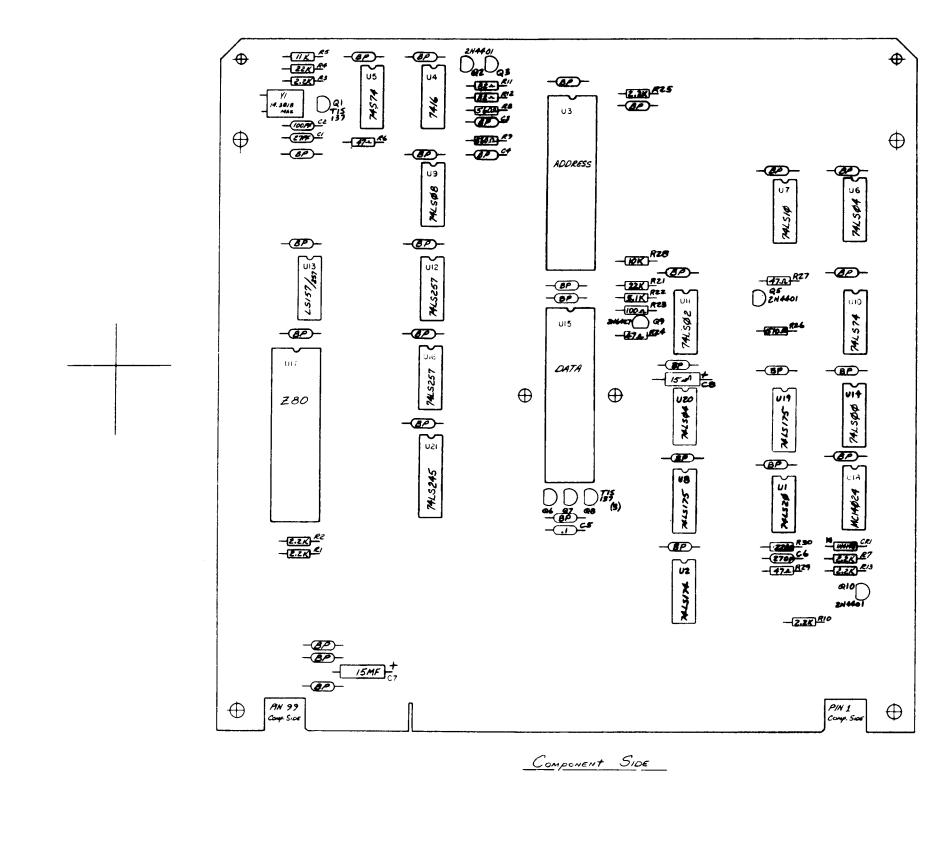


GAME BOARD SCHEMATIC — SPACE ZAP

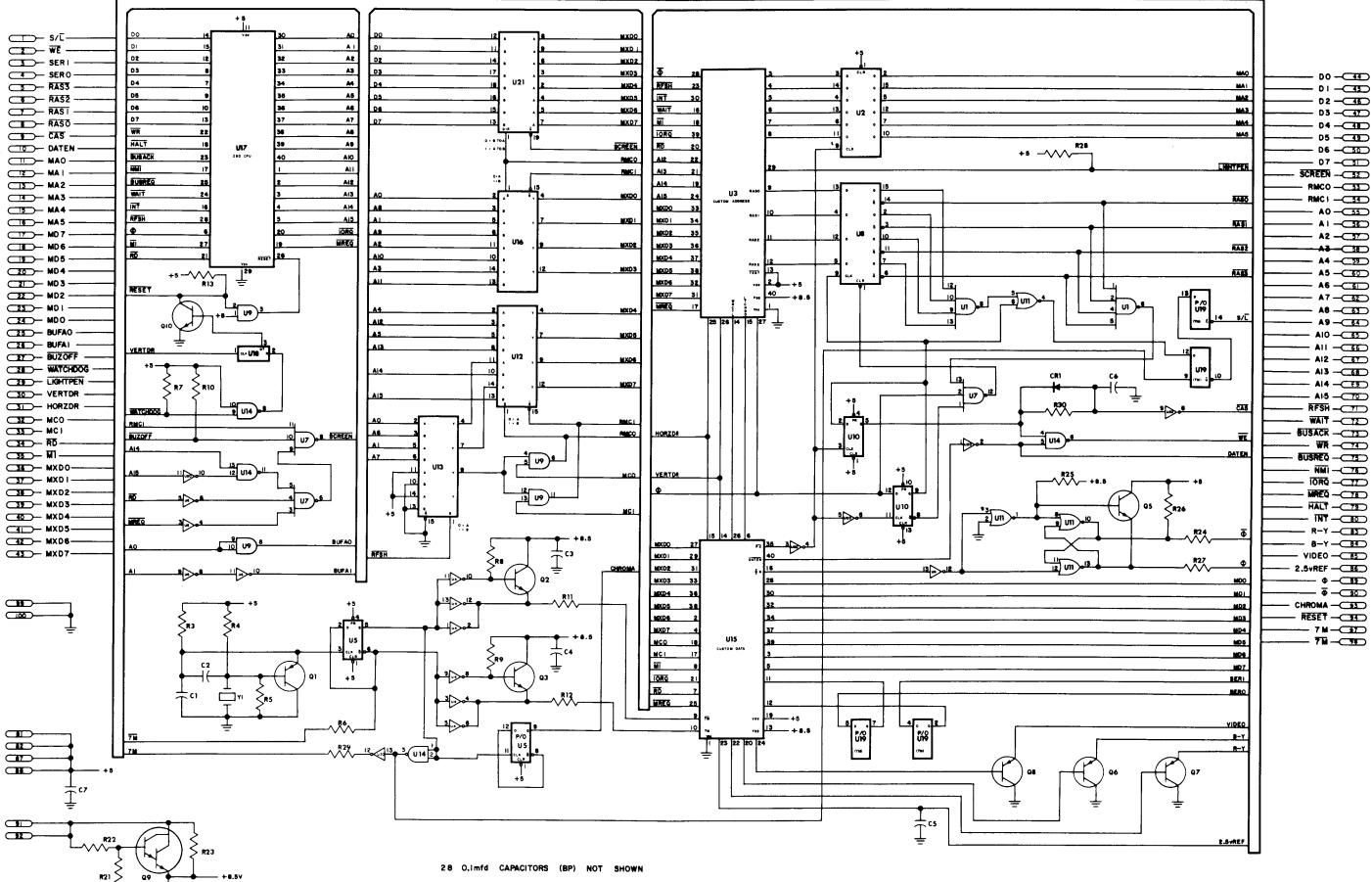
(3) INVOOV


	MIDWAY N	AFG. C	0.			
TITLE	SMCE 2AP	GAME	Bento			
POR 1	CARS					
A084-90708 - A902						

/-19-8/ Barn oligs/8/


34

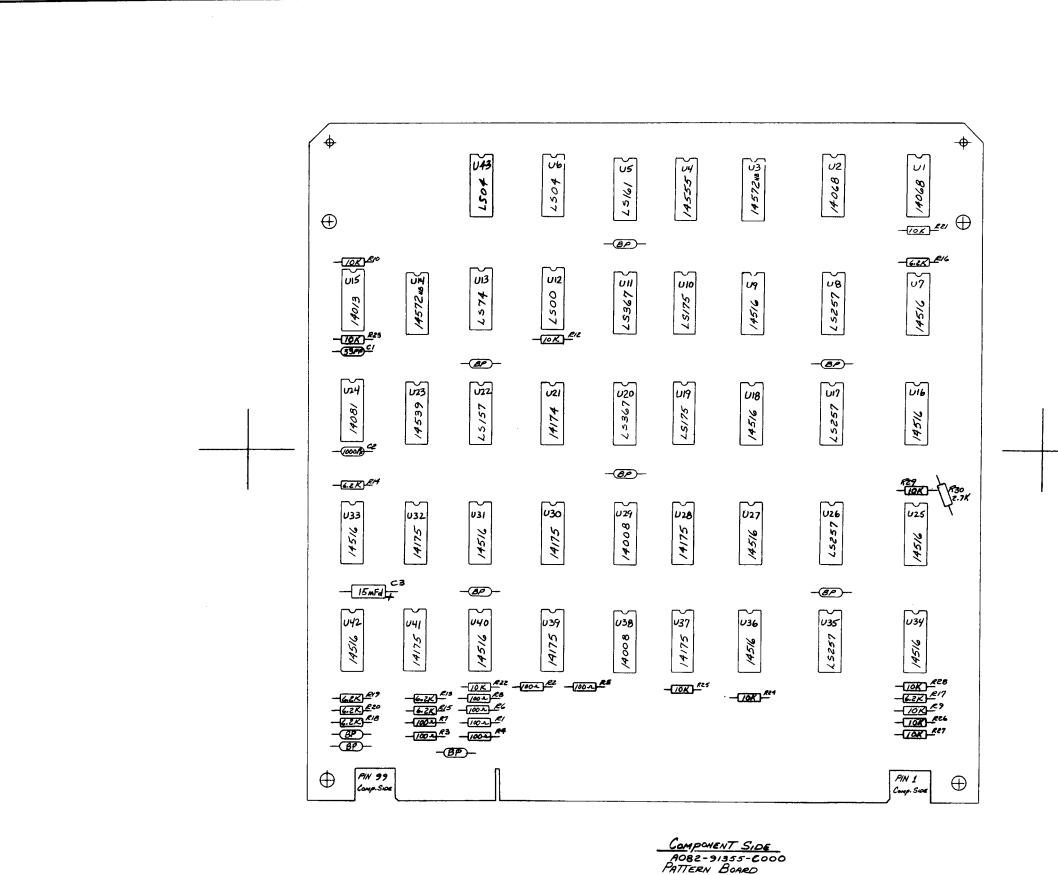
				M051	-00873-0038
	ļ	scu 2.,	9.g.	e CF	MIDWAY MEG. CO.
	1	hadefual Paato			GORF GAME BD
t	11.7.80				CCR
Ŧ	10.0.00				A084-90708-Ca73



^{*}C VERSION LOGICHAS 47K RESISTON THAT IS IN TRACE OF PIN-8 OF SC-01 IN THE B VERSION THE 47K IS SHORTED

GORF GAME BOARD A084-90708-C873

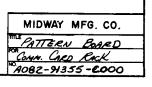
The CPU	BCARD) Rack	
	THE C PU	The PU BOARD	П. С. Р. ВСАКО С

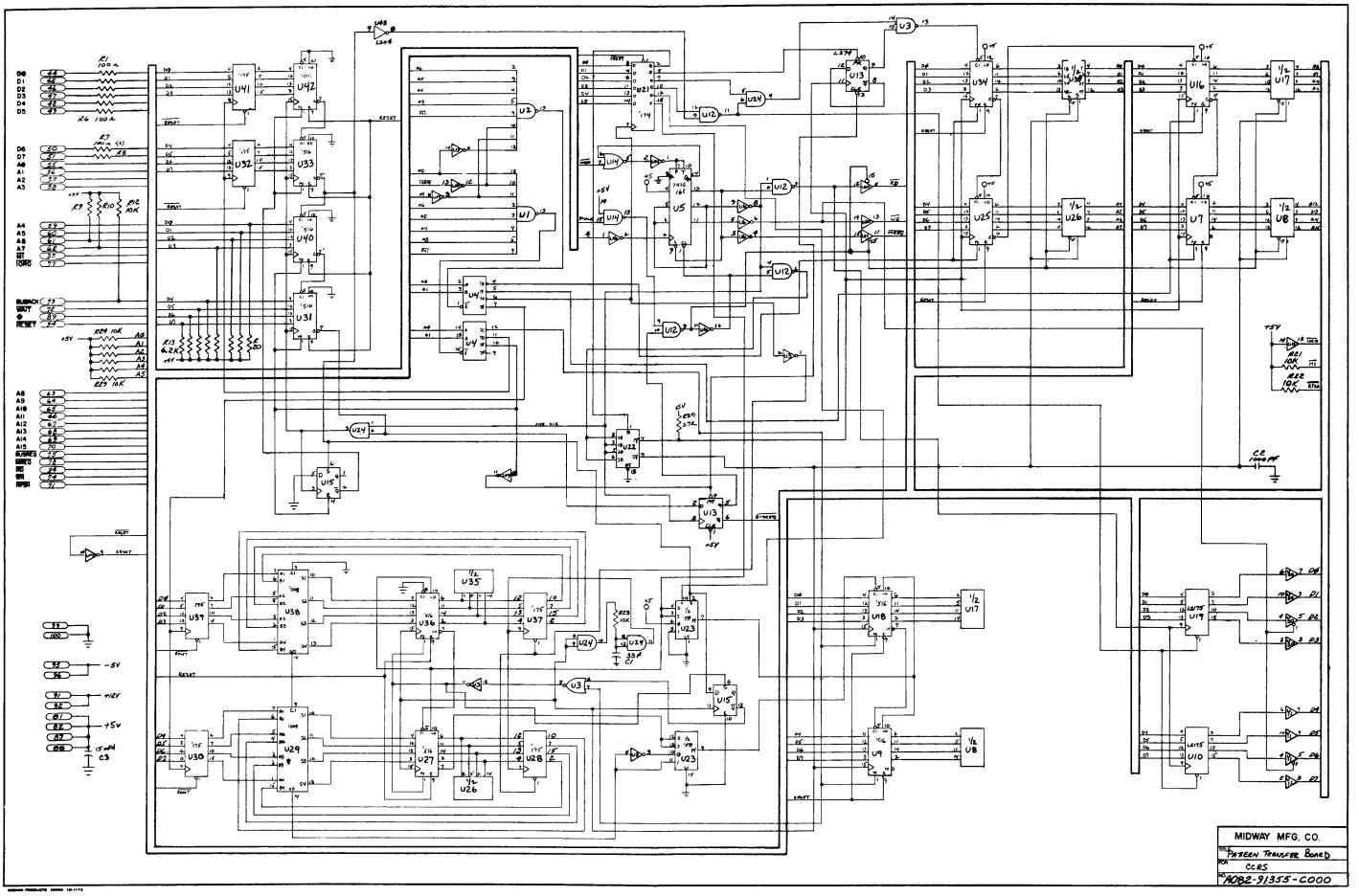

CPU BOARD SCHEMATIC

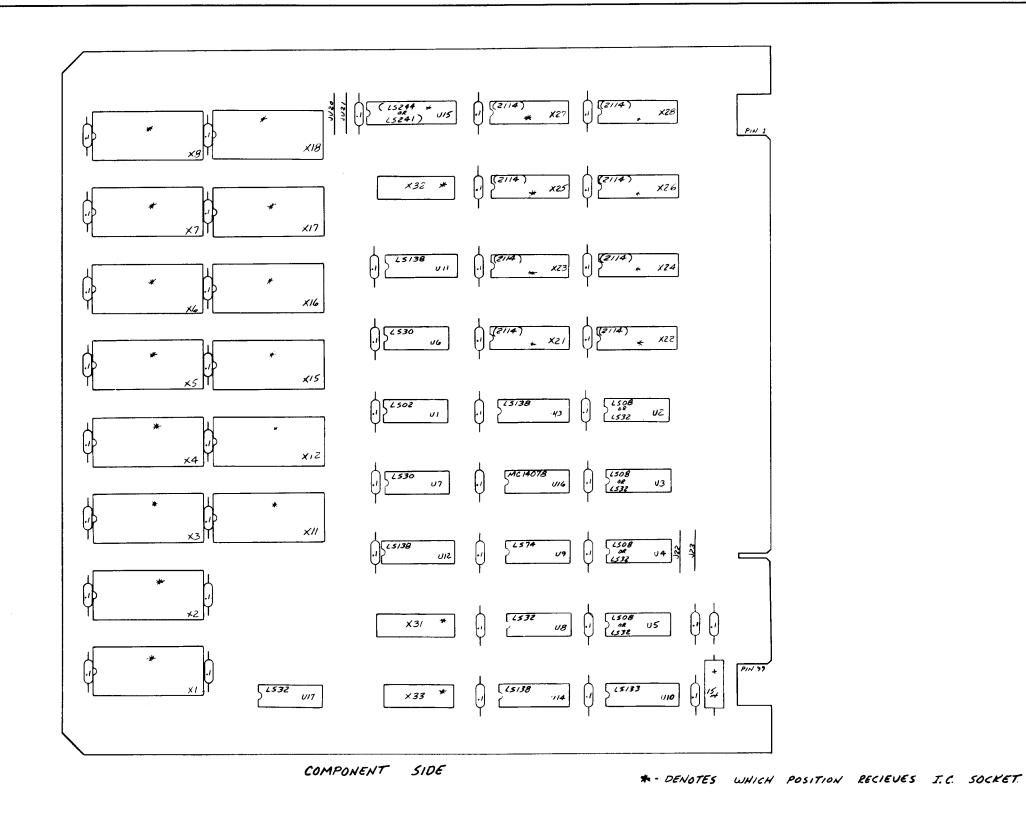
CPU BOARD

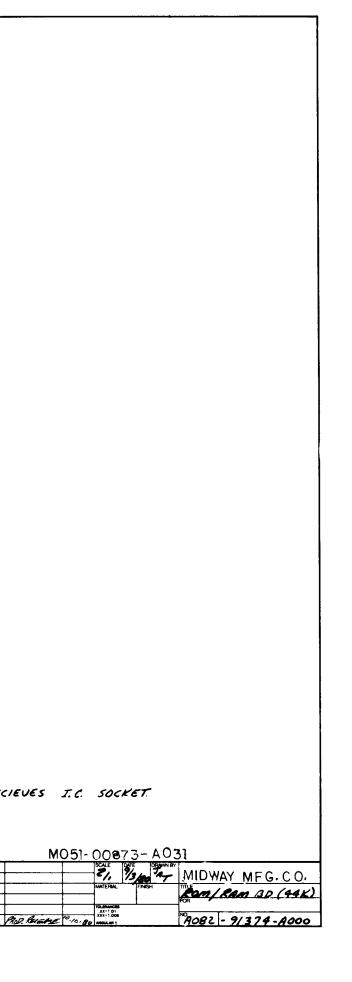
۰<u>Ť</u>

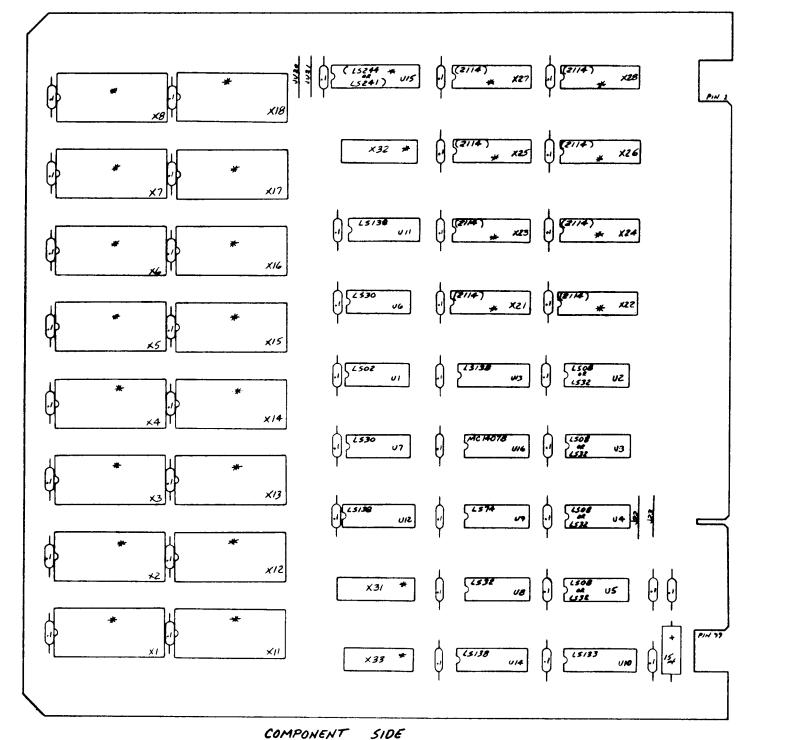
RMC1 -54 - 40 - 55 - A2 - 37 A9 - CET - AI3 -_____ - AIS -_____ RFSH -_____ - WAIT - 72 BUSACK -73 -- WR -- 74 - 8-Y-01 - 🖣 - 🌆 CHROMA - 93 - RESET - 31 - 7 M - 37

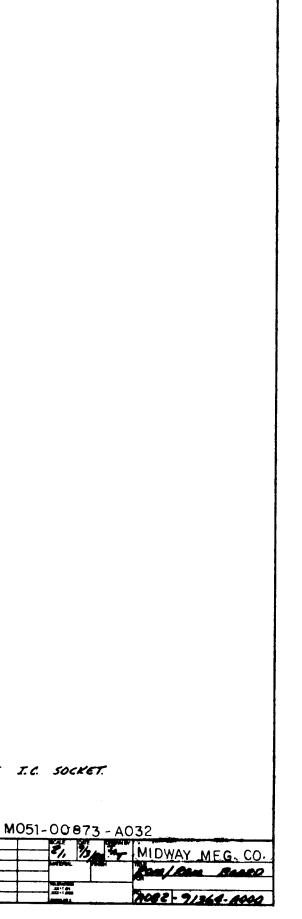

A082-91354-E000 M051-00789-E005

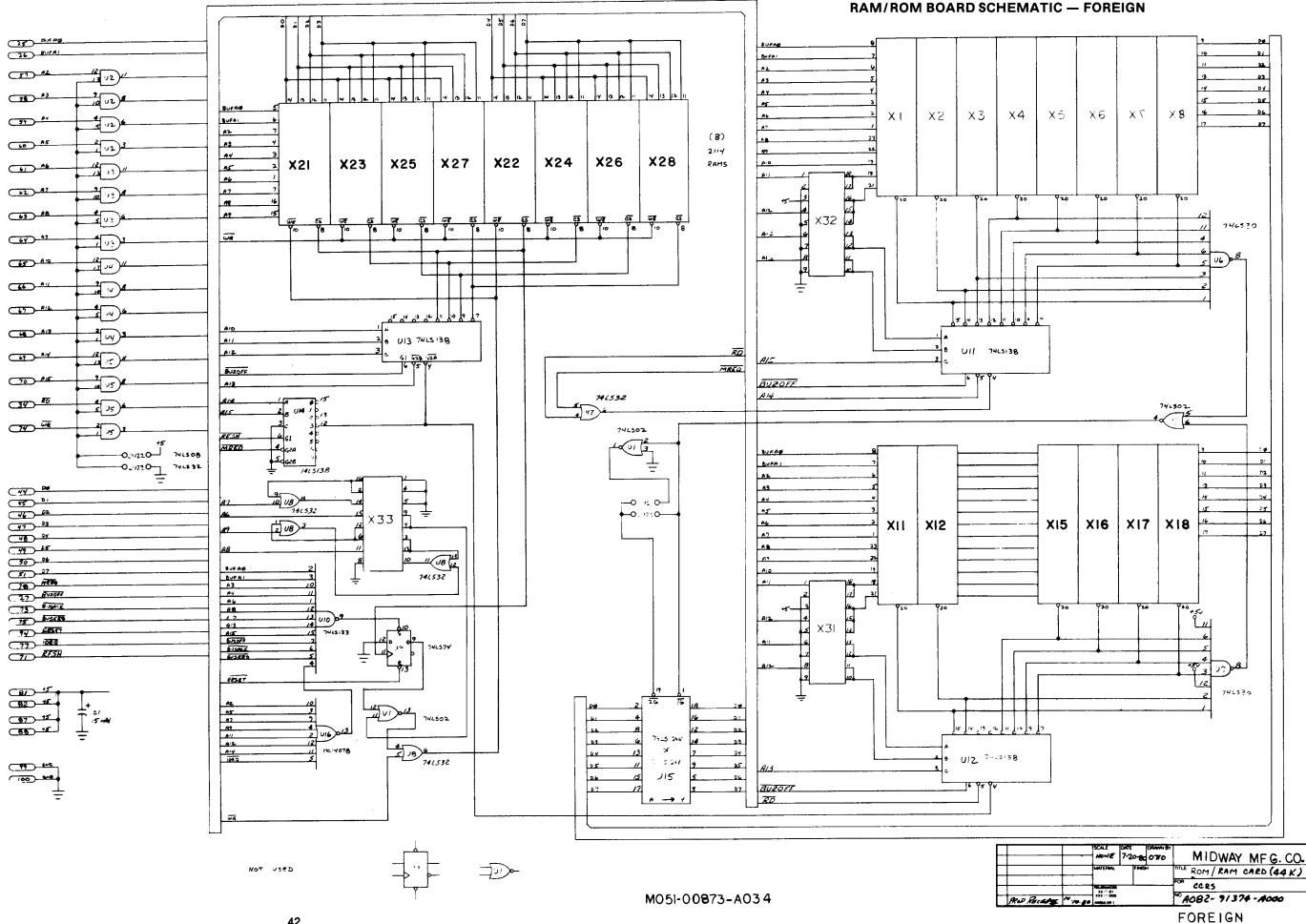

COMM. CARD RACK

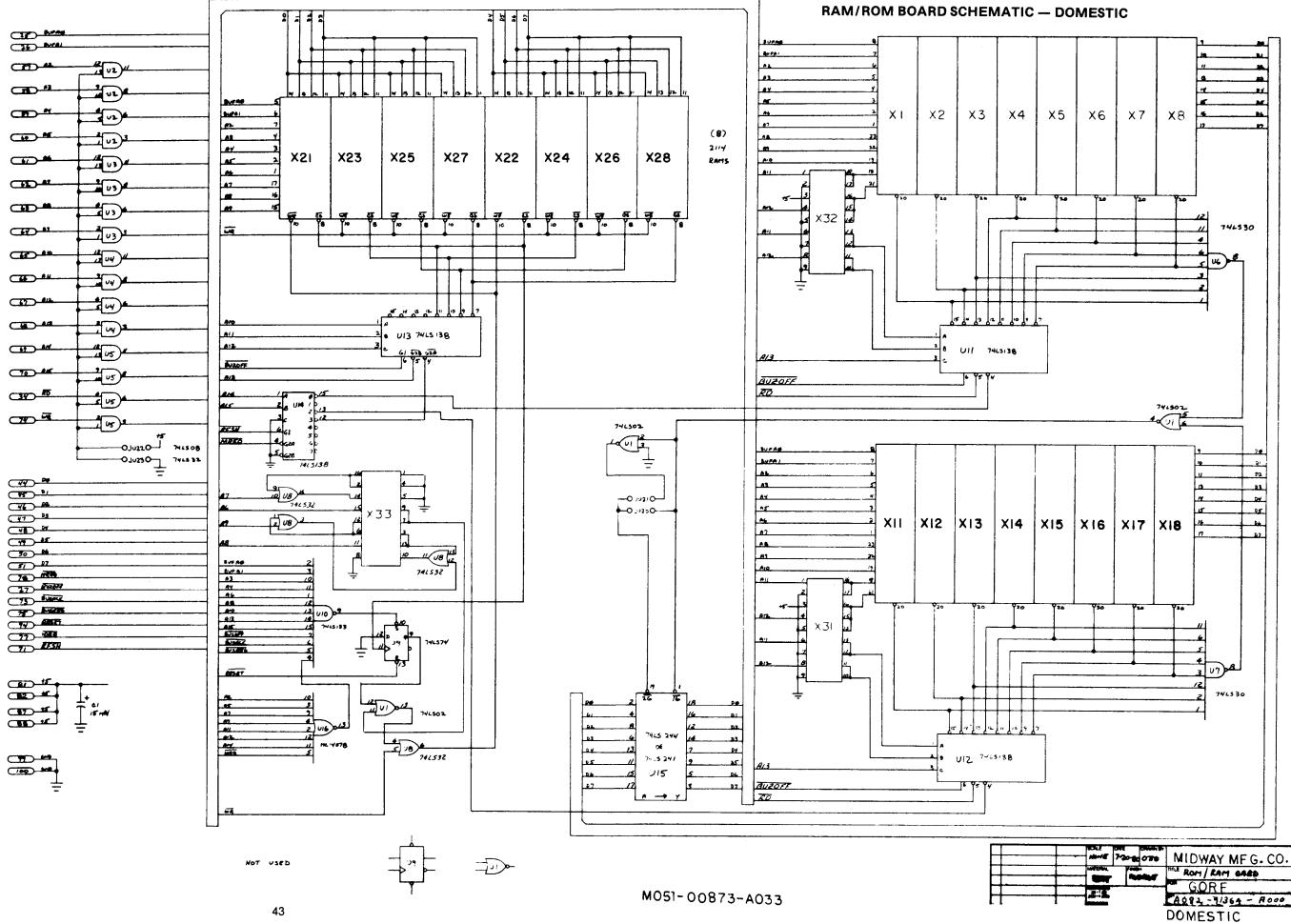

PATTERN BOARD LAYOUT

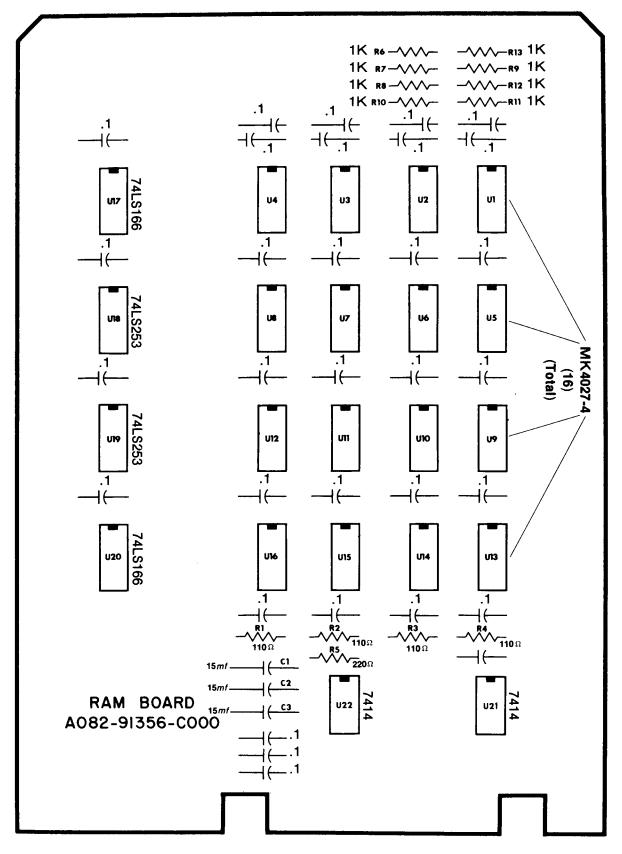



PATTERN BOARD SCHEMATIC

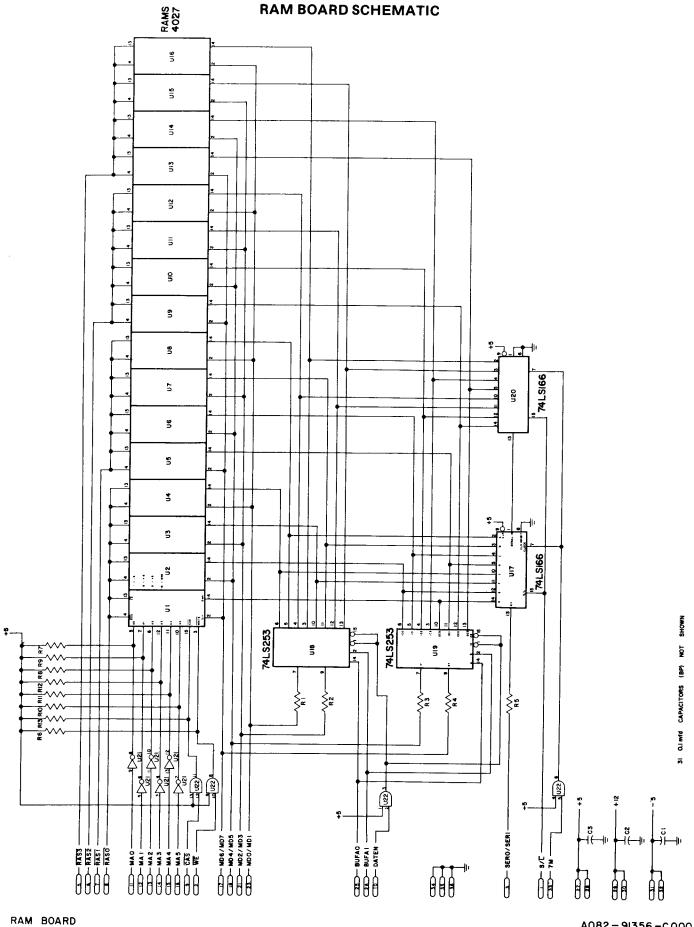



FOREIGN




* - DENOTES WHICH POSITION RECIEVES I.C. SOCKET.

N



COMPONENT PART NO. M051-00789-C003

SCHEMATIC PART NO.

M051-00789-A002

SERVICE BULLETIN

GAME: GORF

SUBJECT: NEW 6 CARD Z-80 SYSTEM USING A CARD RACK

GAME CARD (PC A082-90708-A873) I & O CUSTOM CHIP (TWO) TALKING CHIP - SC-01

ROM & RAM CARD (A082-91364-A000) DOMESTIC & FOREIGH (A082-91374-A000) RAMS 2114 ROMS 9316 OR 9332

CPU CARD (A082-91354-E000) Z80 CPU ADDRESS CUSTOM CHIP DATA CUSTOM CHIP CRYSTAL 14,318

RAM CARD (A082-91356-0000) TWO RAM CARDS 16 RAM EACH (M4027)

PATTERN CARD (PC 082-91355C000) SHIFTS INFORMATION AT A FASTER RATE

POWER SUPPLY (PC 082-90411-A000) SAME AS SPACE ZAP

NOTE: ALL PC CARDS EDGE CONNECTORS ARE GOLD PLATED.

ANDY DUCAY SERVICE MANAGER

SERVICE BULLETIN

GAME:SPACE ZAP, GORF & WIZARD OF WORSUBJECT:Custom chip identification (I/O, Address, and Data)

The following numbers will identify the special custom chip used in Space Zap mother board (PC 084-900002-B625).

Ι/ Ο	2720 or 0066-117XX
Address	2719 or 0066-115XX
Data	2721 or 0066-116XX or 2860

SERVICE BULLETIN

November 19, 1980

GAME: SPACE ZAP, GORF & WIZARD OF WOR

SUBJECT: Card Rack System Test Equipment

To aid board repair the following test cards are available

- 1. A Ram Test Card to locate a bad Ram. A082-91516-A000
- 2. A Card Rack Test Card which is used with the Ram Test Card and will also test the pattern card. A082-91517-A000
- 3. Order test cards from the Midway's Parts Department.

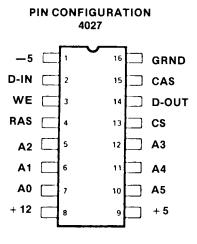
Andy Ducay Service Manager

AD/dc

SERVICE BULLETIN INTERFACING DYNAMIC 4027 RAMS TO THE Z80

Sixteen-pin dynamic RAM's are increasingly being used as the memory component for data storage in microprocessor - based systems. Their popularity over static and 18 or 22-pin dynamic RAM's has been the result of a maturing memory technology and the characteristics of the devices themselves. Their main features are low cost/bit and high bit density; additional features include a low standby power mode, TTL-compatible inputs and outputs and system-upgrading expansion capability. Replacing the chip-select pin on the 4K device with an additional address line effectively quadruples memory capacity to 16K bits. It is now possible, for example, to assemble a full 65K-byte memory system on a single printed-circuit board in an area of less than 50 sq. in.

Now however, the system designer must be concerned with the interface requirements of 16-pin dynamic RAMs. The characteristics of this memory element require that refreshing of the memory be performed at periodic intervals in order to retain the stored data. This, coupled with the requirement for multiplexing address lines, has been the main drawback to their use. A typical interface requires approximately 12 to 20 standard TTL devices and includes timing generators, decode logic, multiplexer circuitry, refresh logic and buffers.


The Zilog Z80A microprocessor is designed to simplify this interface with built-in refresh logic, which allows totally transparent RAM refresh without the need for a refresh counter or it's associated multiplexer.

16-PIN DYNAMIC RAM ADDRESSING

Each cell of a dynamic RAM array is arranged in a matrix. Selection of a unique bit location within this matrix in a 4 K RAM requires 12 address lines, while a 16 K RAM requires 14. For a 16-pin RAM to accommodate these lines, it must divide them into two groups - row addresses and column addresses (six each for the 4K RAM and seven each for the 15K RAM).

Each group is applied to the RAM on the same input lines through an external multiplexer and is latched into the chip by applying two clock strobes in succession. The first clock, the row-address strobe (RAS), latches the row address bits (A-0 to A-5 for 4K, A-0 to A-6 for 16K) into the RAM. The second clock, the column address bits (A-6 to A-11 for 4K, A-7 to A-11 for 16K) into the RAM.

Each cell therefore is uniquely addressed by row and column. When RAS goes active, all of the cells in the selected row respond (there are 64 rows in the 4K RAM matrix and 128 rows in the 16K RAM matrix) and are grated to sense amplifiers where the logic level of each cell is discriminated, latches and rewritten. CAS activates a column in the matrix (there are 64 columns in the 4K RAM matrix and 128 columns in the 16K RAM matrix) that uniquely identifies the cell in the row output and yields the required bit to the output buffer.

